
Digital Built Week Europe 2019 
BILT Europe 2019 

EICC, Edinburgh 
10 – 12 October 2019 

Page 1 of 39 

 

 
 

Session 2.2 

Visual Programming in Infrastructure: Gung-ho 
Tactics for Getting Stuff Done 
Jostein Berger Olsen, Bad Monkeys  

 
Class Description 
The introduction of BIM in Infrastructure has been, and still is, a bumpy ride. Adding to it, 
Infrastructure projects are complex and faceted in its very nature. With visual 
programming tools you as an engineer, modeller or drafter get a new set of tools that 
can be applied to a range of different production challenges for consultants, owners 
and contractors alike.  This lab will look into how we can parametrically drive 
Infrastructure BIM-models using visual programming tools. We'll cover some basics, but 
also explore aspects of geometry, math and data handling that in sum can more or less 
directly be applied to live projects.  
So, if you're an Infrastructure BIM'mer come attend this lab, and learn how things can 
be done better and faster than ever before! 
 
 
 
 
 
 
 
 
 
 

 
 
 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 2 of 39 

About the Speaker:  
Jostein Olsen is a structural engineer, turned 
visual programming specialist, now working for 
the Bad Monkeys. Before joining the monkeys, he 
has gathered 10 years of experience in the AEC 
industry working on everything from small scale 
industrial projects to large infrastructure projects. 
He has a wide experience with practical BIM 
workflows and has dug deep into the wonderful 
world of Dynamo, on which he has his own blog 
jbdynamo.blogspot.com. He has a passion for 
finding the practical middle ground between the 
BIM-idealists and the more conservative forces in 
the industry and thinks parametric modelling 
software and computational thinking can help 
close that gap. 

 
 
   



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 3 of 39 

Table of Contents 
 
1.0 Introduction .......................................................................................................................... 4 

1.1 A Little Note on Software................................................................................................. 4 

1.2 How Do We Learn? .......................................................................................................... 5 

1.3 What’s the Deal with These Curves ................................................................................ 8 

Curves ain’t curves.. .............................................................................................................. 9 

2 Points (Along curves) ............................................................................................................ 12 

2.1 Points along curves ........................................................................................................ 13 

2.2 Points Projected ............................................................................................................. 15 

2.3 Points Analysed .............................................................................................................. 17 

3 Vectors and Angles .............................................................................................................. 20 

3.1 Setting an Elements Rotation ........................................................................................ 20 

4 Data ....................................................................................................................................... 23 

4.1 Renumber Elements ....................................................................................................... 23 

4.2 Parsing Text Data ........................................................................................................... 26 

5 Coordinate Systems ............................................................................................................. 30 

5.1 Placing Utility poles again... .......................................................................................... 32 

5.2 Building Solids using CS .................................................................................................. 33 

5.3 CS and Discrete Geometry ........................................................................................... 37 

6 Closing Remarks .................................................................................................................... 39 

 

  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 4 of 39 

1.0 Introduction 

Welcome to this handout. If you are reading this it will presumably be because you 
work with Infrastructure projects and you want to do stuff with Visual programming. 
Good! Then you’re in the right place, hopefully.. 
 
I did an entire session last year on why the need for visual programming in Infrastructure 
and if you want to read it you can find it here: 
http://jbdynamo.blogspot.com/2018/10/bilt-eur-2018-computational-thinking-in.html  
Basically, what I’m stating is that Infrastructure projects are especially prone for using 
Visual Programming software because of the projects’ complexities, the lack of proper 
modelling software (at least for some disciplines) and that the numbers show us that 
we’re not becoming all that much more efficient, on the contrary. So, Infrastructure is 
very ripe for Visual Programming, &&/|| programming in general. And fantastic 
examples have been put forth by many key players in the industry. My goal though is 
NOT to show you fancy examples and scare you into using visual programming, no, my 
goal is to actually teach you something. And hopefully, this handout and session at BILT 
EUR 2019 will give you some direct and concrete examples that will inspire and you and 
provide you with something that you can apply straight away in your projects.  
 
As a little something extra, tidbits of fun facts or tips & tricks are strewn about this 

handout. If that is all you are after, look for text in green!  সহ঺঻ 

 

1.1 A Little Note on Software 

The handout and lab-session will be centred around Revit and Dynamo. I know for sure 
that isn’t necessarily the best combination, and certainly not the only one, for 
Infrastructure projects.  
Grasshopper/Rhino for instance are very good competitors with their connections to 
Tekla etc.  

Common for both of them is that they are not originally infrastructure tools, and by that, 
I mean, they are not built for linear elements. Revit and Tekla for instance were created 
to be used with grids and levels. Not with superelevations, corridors and alignments. 
Moreover, these tools have led the way in using BIM for construction and now we see 
that more and more infrastructure projects are also turning their eyes on BIM. Therefore, 
it is only natural that many BIM power users with experience from BIM-software are 
moving into infrastructure projects only to find that their software are far from complete 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 5 of 39 

and “infrastructure ready”. I think this is one of the main reasons people have been so 
keen on picking up Visual Programming as well as the sheer scale of modelling efforts 
needed on these big projects. 
Most of the examples can with little translation be used in either so hopefully you won’t 
leave empty handed. 
 
But first, a little something on how we learn. 
 
  
 
 

1.2 How Do We Learn? 

I’ve given a lot of thought to this subject. I’ve been at numerous workshops, classes, 
sessions, talks etc without actually learning anything. Especially I find this true on some, I 
won’t say names, branded conferences where it seems people are just in it for showing 
off. That all fine and dandy, but what is the purpose if we’re not learning anything.  
So, how do we learn? 
 
Well, I can’t speak for anyone else than myself but there are a couple of main drivers 
that spark my own learning.  
 

1. This fella  

 
Or not the robot in itself, but its name: Curiosity. 
Curiosity is one of the main drivers every time I want to learn something. Why is that so? 
How does this node work? Why is that node so shiny? (probably because of IRIS, it’s a 
package, go check it out: https://forum.dynamobim.com/t/i-is-extension-dynamo-2-
graph-colorization-customization/35227) 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 6 of 39 

 
2. Directness 

What you learn must directly apply to what you want to achieve. Want to learn 
Dynamo or grasshopper? Then figure out what problems you want to solve first 
and then begin learning with that as a basis.  
(If you want to hear a very good podcast on learning go here: 
https://gettingsimple.com/scott-young ) 
 

3. Getting ideas 
I’m uncertain of the scientific backing on this one, but for me it is almost always 
the case. I sit in a class at AU, at a course, at BILT and I’m almost falling asleep, 
then all of a sudden, a lightning bolt of inspiration. It can be a picture, it can be a 
formula, it can be whatever, but often it’s those small things that spark an idea 
that you can ponder on and work on once you get back home to your office. It’s 
the set off point for your curiosity! 

 
All the three elements above have led me into a “educational 
path” for this lab. And the concept of key nodes. With key nodes I 
mean those nodes or small combinations of nodes that together 
form an idea or that have sparked my curiosity somehow and that 
are directly correlated to 

Infrastructure. It is direct. This is what I want to pass 
on to you hopefully. What I don’t believe you 
learn much from is showing you huge, overly 
complex graphs. Neither does it create any 
interest or spark much learning looking for the 
nodes in the library. That, you can do on your 
own with this handout in the quiet comfort of your cubicle...  
 

 
 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 7 of 39 

 
The key nodes will be marked as a group in Dynamo and look like this: 

 
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 8 of 39 

1.3 What’s the Deal with These Curves 

So, as previously stated, Infrastructure is a vast subject. Hell, even just Visual 
Programming in Infrastructure projects is a vast subject. In order to have any real value 
gained from this session we must churn it down to a manageable piece. First off, let’s 
exclude stuff like Power generation, waste management and focus on linear projects, 
like rail, roads, water supply etc etc. One of the most idiosyncratic traits of designing in 
these kind of infrastructure projects is using curves. Corridors, alignments, feature lines, 
all of them stems from the geometric concept of curves. So that is what will serve as a 
basis for most of the examples in this handout. The vastness and complexity of these 
projects rears their ugly heads also in just how we use curves. The curve is often created 
in a linearly based software like Civil 3d, Novapoint, Bentley OpenRoads or something 
and then it is derived to any number of different formats like LandXML, dwg, VIPS. To 
simplify, in this session I have an imported dwg that will serve as an outset for all our 
scripts and algorithms. 
I present: 
The Curve: 

 
It is a Polyline curve with the following traits 

 Length: 102 meters 
 Fluctuates in horizontal direction (XY) 
 Fluctuates in vertical direction (Z) 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 9 of 39 

The way we are going to operate on this curve is by extracting the imported elements 
geometry. 

 
There is a number of ways of doing this, but for simplicity’s sake we’re going to keep it at 
that. 
 

Curves ain’t curves.. 

There are lines, arcs, polylines, circles, ellipses and whatnot. Moreover, we have NURBS-
curves (Non-Uniform Rational B-Spline) and a whole more. In a Visual Programming 

environment, we have two ways of placing points, calculate vectors, position elements 
and do other operations when dealing with curves. 

1. We can use the parametrization of the 
curve 

2. We can use actual segment lengths or 
chord lengths  

 
This matter profoundly. 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 10 of 39 

 
So, what is a curve?  
Well, a curve in mathematical terms is 
really just a collection of one or more 
functions that that describe all possible 
points between a start and endpoint. If 
you feed the curve collection the 

parameter t into these functions, you’ll get the geometric shape. Like a licorice lace 
right. You could bend, twist it, do whatever.  
Inputting the parameter t is the same as saying “No matter how long this curve really is, 
I’m gonna say it starts at 0 and end at 1. If I want a point in the middle of the curve, I’ll 
input t=0.5” But this is only partially true. It is only true for rational curves. See, for more 
complex curves, like Non-Rational ones, like NURBS the parameter t and the actual 
segment length doesn’t necessarily correspond. This is crucial knowledge. And you shal 
not look further than to the author of this handout for someone who have gone straight 
into that pitfall…  
NURBS mathematics use control points and weights and they can work like magnets on 
the parametrization resulting in stuff like this:  
 

  
Figure 1 Sine Wave parameters (Mcneel)Weighted parameter (Mcneel) 

Figure 2 Sine Wave parameters (Mcneel) 

  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 11 of 39 

As you can see in the below picture, there are more functions dealing with 
parameters(0 to 1)than actual curve length (0 to Length), so keep this in mind if your 
constructions or objects are prone for tolerance error for instance! Equal distance 
between parameters doesn’t necessarily mean that the segment lengths are also 
equal! 

 
I’m gonna leave it at that, but if you want to read more on this, check out this 
awesome article by Grasshoppers father David Rutten: 
https://ieatbugsforbreakfast.wordpress.com/2013/09/27/curve-parameter-space/ 
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 12 of 39 

2 Points (Along curves) 

A lot of things we need to do when BIM’ing Infrastructure elements require us to deal 
with geometry. (In fact, that probably is the single biggest selling point for using visual 
programming interfaces all together since our tradtional level and grid tools are quite 
bad of dealing with stuff derived from linear elements.) 
 
Visual programming sort of opens up the geometric toolbox that our tools incorporate 
themselves in their source code. At the base level, geometry is an abstract thing no 
different from numbers to the computer. All the geometry that you create on your 
screen is basically numbers and a structure of relationships between those numbers in a 
given coordinatsystem.  
That means: A point consist three numbers right, given a cartessian coordinatsystem.  
A line is defined by two of those points  
A plane, or any 2D construct consist of multiple lines with multiple points etc etc. 
We have abstracted all geometry to be dependent on each other.  
 
In short computational geometry is a hierarchy. 

 
Figure 3 Geometry=Hierarchy: https://primer.dynamobim.org/05_Geometry-for-Computational-Design/5-
1_geometry-overview.html 

So, if geometry is the language, points would be the alphabet. They are the compound 
which all other computational geometry relies on.  
 
This is also true in Infrastructure, so first we’re going to have a look at how we can 
create points along curves in Dynamo. 
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 13 of 39 

2.1 Points along curves 

Below you can see one of the standard ways of creating points along a curve. 

 
 
This particular graph uses Curve.PointAtSegmentLength, but as stated you can also 
replace it with Curve.PointAtParameter. Just, again, remember that the points will not 
be equidistant on more complex curves. 
 
Another thing to notice is the way the range is set. You could use the Range or 
Sequence nodes, but I really recommend using ranges in DesignScript. Below you’ll find 
some of the most used explained. 
 

 
Figure 4 Using Curve Lengths 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 14 of 39 

 
Figure 5 Using Curve Parametrization 

Placing stuff with points are quite easy with Dynamo. They key node you can use for 
placing 1-point families is this one: 

 
 
 
 
 
 
 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 15 of 39 

Which lets you place families in the Revit document. This can be used for placing 
infrastructure elements that doesn’t rely on tilting or rotating around its axis. Like trees! 

 সহ঺঻ 

 
 

2.2 Points Projected 

One of the most versatile features with regards to Infrastructure in Visual programming is 
the ability to shoot points at stuff... I can’t begin to explain how many hours’ worth of 
unnecessary labour this has saved during my time with it. In some of my previous 
sessions I have explained this in detail so go jbdynamo.blogspot.com and go to my BILT 
posts for an in-depth.  
But Point.Project is useful, so useful. And this is how you set it up: 

 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 16 of 39 

As you can see, there are two key nodes in this graph.  
1. Mesh.ToPolysurface: The first is from a package called spring nodes and converts 

a mesh derived from a topography in Revit to a polysurface in Dynamo.  
2. Point.Project: This is the actual “shooting node” where you provide a direction 

and a starting point. 
Mind you that the conversion of a mesh to a polysurface is a very computationally 
heavy operation, so be aware when you have a large toposurface.  
 
A little efficiency tips here is to add a node called Polysurface.LocateSurfacesByPoint. 
This will get the single surfaces of the polysurface that is actually valuable to us. This 
increases performance by quite a bit. 

 
 
Put this together with our created curve points: 

 
 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 17 of 39 

And you have yourself a rig for creating a whole range of terrain adapted stuff, like 
sheet piling, piles, rock anchors and so on.  

 
 
By the way, if you do have Grasshopper/Rhino 
available, these calculations are WAY faster to do 

in Grasshopper. Just sayin’. 😊 

 
 
 

2.3 Points Analysed 

Another set of Key Nodes I find interesting is the PointsAnalysisDisplay framework in 
Dynamo for Revit. This lets you graphically show any numerical data connected to a 
point in Revit with colours and labels in a flexible way. The key node is this one: 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 18 of 39 

 
 
In order for it to work though, you need to set up your Revit view in a certain manner 
like this: 

 
 

1. Select the Default Analysis Display 
2. Select “New” 
3. Select the “Markers with text” option 
4. Give the Analysis Display Style a name 
5. Set the settings 

 
 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 19 of 39 

Let’s say we were to use it on our previous example with projection of points and 
wanted to visually identify the different heights of the points. 

 
And the result: 

 
  
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 20 of 39 

3 Vectors and Angles 

More often than not, stuff that we want to place 
along our alignments and curves are actually 
following the curve as it is twisting and turning up, 
down and sideways. So, though trash bins may very 
well be placed without any rotation, lamp post are 
not for instance. The same can be said for placing 
profiles along curves, creating bridges, etc etc. In that 
case we need to start operating with angles and 
vectors. So, buckle up, we’re going back to school 

now for some maths!  সহ঺঻ 

 

3.1 Setting an Elements Rotation 

The key node for setting rotations on Revit elements with Dynamo is the 
FamilyInstance.SetRotation node. 

 
This node accepts family instance(s) and angle(s) between 0 to 360, ie the Euler angle. 
(Check it out here: https://en.wikipedia.org/wiki/Euler_angles ) 
 
To find angles along curves given that we already have placed location points along it 
is quite easy, we can extract the tangent vector at the points we have placed along 
the curve and measure the angle between the tangent and a fixed vector (like the Y-
axis.) 
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 21 of 39 

The only thing to keep in mind is that Dynamo only way of finding tangents along a 
curve is by using the curve parametrization, ie parameter between 0 to 1, so we need 
to compute the parameter values at those points we have placed if segment lengths is 
used to place the points. Hard to read sentence, but the pic below sums it up good. 

 
 
So now, we have a list of vectors and we can measure the angle with a fixed vector to 
set the rotations. There are two nodes in Dynamo for doing this and you must use one 
over the other.  

 
The reason for choosing Vector.AngleAboutAxis is that it returns a number between 0 to 
360 whereas the Vector.AngleWithVector returns values between 0 and 180. Revit 
expects 0 to 360 so be careful of using the latter!  
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 22 of 39 

Say we want to create utility poles along our little line, we can continue the graph 
above like this: 

 
And we’ll get the result in Revit like this: 

 
 
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 23 of 39 

4 Data 

One of the really strong things about Dynamo is the ability to acquire, modify and set 
data within Revit. Compared to other combinations of modelling software and Visual 
Programming this is where Revit and Dynamo really shines.  
This is especially handy in Infrastructure projects where scalability is paramount since 
we’re usually looking at huge stacks of elements, data and geometry but where the 
logic is often quite fathomable and easily “programmable”. (like these utility poles will 
be placed once every 5 meters, perpendicular to the curve they follow, 3 meters from 
the centreline, but there is like 10000 of them!!!) Often data in Infrastructure projects are 
bespoke in the sense that the naming system, the data schema you have to fill in in 
BIM-projects etc. vary heavily from project to project. This makes it hard for Software 
developers to adapt and care for all the needs for their clients since it is so fragmented. 

So, enter Visual programming tools again!  সহ঺঻ 

 

4.1 Renumber Elements 

I’ve seen many examples for dealing with data with visual programming tools, but I time 
and time again come back to this one. Renaming elements after a curve. It is a good 
example because it shows us how we can extract geometry from the modelling 
software, like Revit, use the geometry engine and sorting abilities in Dynamo and push it 
all back into Revit again. 
 
So, for simplicity, let’s say we have a number of 
bollards in Revit randomly placed and then we want 
to rename after a curve so that the closer the 
bollard is to the start of the curve the lower its mark 
number is supposed to be. 
 
 
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 24 of 39 

So, this is the gist of the logic in the script: 
 
Extract the location points with their existing 
numbering and the curve that we want to 
use. 
 
 
 
 
 
Now, if we normalize the curve length 
we can say that no matter how the 
curve may look it runs from 0 to 1 in 
length 
 
 
 
 
 
If we take our points find the closest 
points on the curve, we can extract 
the normalized curve length (or 
parameter) at those points. 
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 25 of 39 

 This means that we now have the original 
list of point numbering with its belonging 
parameter along the curve. 
 
 
 
 
 
 
 
Knowing from earlier experience 
that there exists functionality that 
can sort list based on another list 
we can now sort the original list 
of points with regards to the 
curve parameter belonging to 
them. 
 
 
 
 
 
Now we have a list that have sorted the points and we can renumber them. 

 
 
Have a look at the “Data” Dynamo file in the examples. 
 
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 26 of 39 

4.2 Parsing Text Data 

Often when the lack of standards and compatibility gets too frustrating, you’ll find 
yourself diving into text files or CSV or whatnot to get the data you need. Visual 
programming tools again shows off their versatility in that you can use them to parse this 
information into actual useful geometry or data in your BIM software of choice. 
 
This is a typical file that represents some export from an unidentified road creation 
software. 

  
 
In Dynamo we have the power of string parsing which lets us translate this text file into 
something useful. Abstracting the process would look like this: 
 
You have the text in one string looking like this 

 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 27 of 39 

A good way of starting would be to split the 
string at each new line, right? 
 
 
 
 
 
 
This would lead to a list of items like this (this part involves using the concept of storing 
data in lists, like Dynamo does..) 

 
 
Now that we have separate items how 
can we split it up further? Let’s take one 
line: 
 
Now, we see that there is at least one 
space between the numbers we want, so 
we can split it at each “space”. 
 
This returns a list of lists.  
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 28 of 39 

As we can see though, splitting by just one “space” character will leave some 
whitespace in front or behind our data, so we have to get rid of all whitespace on all 
items as well. 

 
This way we have the items we need separately and now the final thing is to convert 
the string values of XYZ to actual number values. 
 
In Dynamo the implementation will start something like this: 

 
 (The File.FromPath is necessary because if the text file updates, Dynamo will be able to 
tell that it is updated and reruns the script. ) 
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 29 of 39 

For this particular case this is how we can continue like this: 

 
 
This splits our data into usable list structures in Dynamo and we’re able to get actual 
Dynamo geometry from otherwise unreadable file formats. As long as the data is 
structured, we can extract at least something useful from it. 

 
 
From here we can use the points to create lines, polycurves etc etc. Whatever makes 
the most sense to you!  সহ঺঻ 
 
This is where we’re using Dynamo as a middleware. If you’re interested in reading more 
about “The Rise of Middleware” Nathan Miller has an awesome blogpost right here:  
https://provingground.io/2016/06/21/the-wicked-problem-of-interoperability/  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 30 of 39 

5 Coordinate Systems 

Once we get have points, vectors and angles covered, a 
natural progression is to have a go at coordinate systems (CS). 
What is a CS you might say? 
According to Wikipedia: “a CS is a system which uses one or 
more numbers, or coordinates, to uniquely determine the 
position of the points or other geometric elements on a 
manifold such as Euclidean space.” Easy.. 
 
In Infrastructure, especially linearly based, projects some of the 
disciplines designing the projects are confronted with two diametrically different 
domains. Continuous elements and discrete elements.  
 
Placing XYZ Coordinate Systems in visual programming tools (Frames in Grasshopper) 
are a good construct for alleviating some of the pain in transforming between the two. 
Especially going from continuous elements like curves and place discrete elements 
along them.  
 
The reason for why it is good to use CS is because we’re able to place them along 
curves and then use them for placing stuff, ie with an offset in XYZ direction locally 
instead of having to use real world coordinates. 
 
There are many ways of constructing them in Dynamo, below is two ways I’ve found to 
be the most reliable when dealing with curves. One for creating CS where the Z-axis 
“follows” the curvature and one where the XY-plane is level. 
 

 
Figure 6 Z-axis follows curvature 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 31 of 39 

 
Figure 7 Z-axis is "up" (ie XY-plane is horizontal) 

Explained in steps the abstraction of it is something like this. And, yes, you will find your 
college vector math useful here!  সহ঺঻ 
 
If we can find the tangent-vector to the curve at 
the points given we will get one of the axis, the X-
axis. If we want to “flatten” out the vector we 
can simply extract the tangents X and Y values 
and create a new vector where the Z-value is 0. 
 
 
 
Then, using our college math, we use Cross-
product between the tangent and the Z axis 
to get the Y-axis of our CS. No matter what 
angle our tangent has with the ground plane 
(XY-plane) the cross product between the 
tangent and Z-axis will always stand 
orthogonal to our tangent vector. 
 
 
 
 
 
Finally, we can use math again and take a 
cross product between our X-axis and Y-axis 

and we’ll find the Z-axis of our system!  সহ঺঻ 

 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 32 of 39 

Now, we can begin placing points in each 
local CS. So now, instead of real world 
coordinates we use XYZ-values within each 
respective system.  
 
 
 
 
5.1 Placing Utility poles again... 

Going back to our utility pole example building on what we now know about CS we 
can set them out with an offset. 

 
 
Resulting in this: 

  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 33 of 39 

5.2 Building Solids using CS 

There are many bespoke solutions out there for creating, updating, maintaining Solid 
infrastructure geometry. The following example is just a simple example that can be 
used in early stages of a project and doesn’t necessarily represent what should be 
done in the closing stages of a project with rebars, shop drawings and what not. Still, 
being able to quickly generate models based on other disciplines input in early stages 
of the project is maybe where automation and Visual Programming shines the most.  
So, if you’re in dire need of visualising a bridge and don’t really have the hours, or don’t 
know if the road lines are fixed yet, and the Visualisation team delivery is due Monday 

next week? Then my all means, read on!  ͧͪͩͨ 

 
As stated, apart from taking a profile a lofting it along a curve ((Which doesn’t really 
give you control over the profiles rotation along the path! Like if you have done sweeps 
in Revit..), this is one of the simplest ways of creating a solid along a path that fluctuates 
in XYZ. 
 
What we’re aiming for is to copy out a profile to all our created CS and then loft 
between them. A simplification I’ve done for the matter of clarity is that I’ve drawn the 
profile with model lines at the start of the curve perpendicular to the curve’s path so 
that it fits snuggly with the first CS we create.  
 
This can be done in different ways depending on how you have the profile available 
TIPS! Check out the Archi-lab.net package and these two nodes: 

 
One creates a polycurve for you from a Revit Profile family and the other sorts and 
groups an unordered list of curves into groups of joinable curves for a polycurve. Quite 
nifty, If you want to support Konrad Sobon who created these go to his Patron page 
here: https://www.patreon.com/archilab  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 34 of 39 

So, to get to it the key nodes we need are first these for extracting a polycurve from 
model lines in Revit: 
 

 
 
And then the Geometry.Transform for copying the polycurve from the first CS to the rest: 

 
 
Resulting in this: 

  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 35 of 39 

Now, from here there are a lot of options. You can loft all the profiles together, you can 
loft between two and two, you can do surfaces, solids etc etc. For this example, we’ll 
do with creating a continuous Solid and use spring nodes FamilyInstance.ByGeometry 
package.  

 
 
Resulting in this: 

  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 36 of 39 

Other import possibilities for Solids: 

 
 
But I really recommend spring nodes. A lot of options there that are more stable on a 
general level. 

 
 
NOTE! Dynamo doesn’t have settings for the lofting, like Grasshopper. You may find 
yourself in a situation were lofting between two and two profiles and then join into one 
solid in the end will provide better tolerances with the profiles. It that case you can do it 
like this: 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 37 of 39 

 
 
Or maybe using Rhino.Inside.. 😉 
 
5.3 CS and Discrete Geometry  

As a last example I just wanted to do something fun to show you the power of 
parametric modelling and the power of using coordinate systems in 
Dynamo/Revit/Infrastructure environment. I’m not going to go through this in detail, try 
to just follow the data stream and you’ll get it. It is all about building step by step 
carefully planning which elements should depend on each other so you’ll get a full 
parametric model that can handle changes in inputs. 
In short, there is nothing new in this script, just basically a lot of what we have gone 
through put together in a large script. The only new introduction worth mentioning are 
the creation of beams in Revit. What I do below is that I create the beams using my 
Dynamo curves and then set the beam parameters so that the Z Justification is at 
centre and then disallow joins on the beam ends. 

 
 
 
 



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 38 of 39 

So, if you got it down you should see something like this: 

 
  



 2.2 - Visual Programming in Infrastructure: Gung-ho Tactics for 
Getting Stuff Done 
 
Jostein Berger Olsen, Bad Monkeys Bad Monkeys  

 

Page 39 of 39 

6 Closing Remarks 

Hopefully, you have learned something from reading this handout. If even just the Tips 
and Tricks in green gave you something, I’m happy. 
If you’re just starting to apply visual programming or have 
done it for a while it is worth mentioning that they aren’t just 
a new set of tools like picking up Revit or Microstation. They 
also represent learning yourself a different frame of mind, 
Computational Thinking.  (Again, go to my blog at 
jbdynamo.blogspot.com and read last year’s BILT EUR 
handout and see why I think the mere computational 
thinking part is worth your penny.) 
 
Now, in my opinion, the only way to get to thinking computationally, is by learning 
programming. Since it can prove hard for us engineers/architects/designers to learn 
programming on such a level that it is actually useful, Visual Programming is the way to 
go to increase your computational thinking. 
 
However, it is also necessary to keep in mind that if you have a hammer, you’ll see 
everything as a nail. Even though, sometimes, it is a screw. Dynamo isn’t perfect, hell, 
even Grasshopper isn’t perfect, even though I keep hearing fanboys screaming on 
either side.  
The important part though is that your mind will be structured in such a way that after a 
while you’ll easily identify what kind of work that’s perfect candidates for some 
automation so you can work smarter and not harder. Be it through 3 party software 
vendors or internal visual programming champions. 
 
I believe that picking up and learning some visual programming aids in identifying those 
tasks in our fragmented and complex Infrastructure projects. And therefore, I hope you 
have enjoyed the lab and enjoyed the handout. Please let me know if there are any 

questions!  সহ঺঻ 

 
Now, have a good one! 
 
 
 
 


