
© 2018 Autodesk, Inc.

Dynamo Primer

Paolo Emilio Serra
Implementation Consultant | @PaoloESerra; puntorevit.blogspot.com

Agenda

§ Dynamo Overview

§ User Interface

§ Graphs Management

§ Autodesk Standards

§ Visual Programming Principles

§ Filtering, Grouping & Sorting

§ Dynamo-Excel Link

§ Design Script

§ Geometry Library

§ Automation Applications

§ Dynamo for Revit

§ Dynamo & Python

§ Object Oriented Programming

§ Revit API Introduction

§ Next Steps

Dynamo Overview

What is Dynamo?

§ Open-source software platform

§ Visual interface to construct logic
routines

§ Geometry creation

§ Workflow automation

§ Interface for multiple software

Automation Business Values

§ Reducing man hours

§ Ensure Data completeness

§ Enable Interoperability between
different platforms

§ Improve the efficiency of existing
workflows and create new ones

§ Improve the collaboration

§ Enhance technology adoption

Learning Resources

§ DynamoBIM.org

§ DynamoPrimer.com

§ DynamoNodes.com

§ GitHub/DynamoDS

§ http://dynamods.github.io/DynamoAPI/

§ Blogs, YouTube videos

§ AU lessons and handouts

§ http://www.revitapidocs.com/code/

§ Lynda.com / CadLearning.com

http://www.revitapidocs.com/code/

Dynamo Timeline

Ian
Keough

nights and
weekends

2011

Robert
Aish

Design
Script 2012

Labs -
Revit and

Vasari
2013

Default
with Revit

2015 R2

Dynamo
Studio
2015

Cad
Learning/
Lynda -
Dynamo

Primer
2015

Autodesk
University

2015

Version 1.3
Dynamo
Player

Version 2.1
JSON

format

User Interface

Visual Programming

1. Menus
2. Toolbar
3. Library
4. Execution Bar
5. Work space

Visual Programming

Visual Programming

Nodes

§ Each node is a function with Input and Output ports that take and create lists

§ 3 behaviors:
§ Create (Constructor)
§ Action (Method)
§ Query (Property)

§ Scripting integration
§ Design Script (Code block, .ds)
§ Python
§ …

Code Blocks | Generic Purpose Nodes

§ Double click on the canvas to create

§ Name = Value;

§ Case sensitive

§ End with a semi-colon “;”

Anatomy of a Node

Node States

Warnings

Connectors

§ They define the routine flow of execution

§ Always link an output port to an input port

§ An output port can feed multiple input ports

§ Selecting a node selects input and output connectors

Graphs Management

Graph Management

§ Node Alignment

§ Notes (Commenting)

§ Grouping

§ Color coding
§ Input
§ Function
§ Get
§ Set
§ Output
§ Debugging

Dynamo Graph Files

§ DYN extension

§ XML (up to 1.3.3) / JSON (since 2.0) structure

§ Everyone can access the source code with a text editor

§ There is still no way to compile and protect a Dynamo graph

§ Future versions may be not backward compatible

Custom Nodes

§ Different types:
§ Create from UI (DYF extension)
§ Zero Touch Essentials (C#, Standard Node Interface)
§ Design Script (.ds)
§ C# (Custom Interface)

§ Benefits
§ Clean up definitions
§ Work sharing
§ Recursion
§ Quick adjustments
§ Expand the capabilities

Custom Nodes from UI

§ The custom node is created locally on the machine

§ Definition is not embedded in the graph

§ Must distribute with the graph

§ Easy to do, no coding experience required

§ Make the graph more robust and easier to read

§ Nodes can be grouped in custom shelves in the library

Package Manager

§ Everyone can create a set of nodes and
publish it

§ There is a server that can be searched
from within Dynamo or in alternative a
website

§ The packages are self-installing

§ These are an important part of the quick
success

§ The packages are available for free and
so there is no official support or
maintenance for them

Custom Node Helpers

§ Recall frequently used node
structures

§ Organize the nodes by
custom criteria

§ Copy from the Custom Node
and Paste in the main graph

§ Easier to maintain and
search

Custom Node Helpers

§ Enable searches in the Library

§ Enforce Standards

§ Reduce time to compose graphs

§ Easier to maintain and update

Node to Code

§ A feature that converts UI nodes into a single Code Block using Design Script

§ Great way to learn Design Script syntax

§ Clean up the graph

§ Closer to standard coding

§ New users tend to stay away from Scripts

§ There is no “Code to Node” yet

§ Performance wise there are no differences

Dynamo Script Example

Dynamo Script

§ Associative / Imperative language blocks

§ Replication guides (extends the lacing concept)

§ Conditional statements

§ Loops (while / for)

§ Creation of geometry entities (nurbs curves, nurbs surfaces, loft, revolves, etc.)

§ Manipulation of geometry entities (Boolean operations, intersection, trims)

§ Creation of Custom Nodes

Iron Python 2.7

§ Embedded IDE

§ Very simple / no support

§ .NET compatible

§ References for Revit API
§ Revit.Services
§ Revit.Persistance
§ RevitNodes
§ Geometry Conversion

Backup

§ Introduced in 0.8.2

§ Creates a Backups folder in which stores
the previous versions of the Dynamo
graphs at the same path

§ Accessible from the Home view

§ It is possible to set the interval between
two backups

Autodesk Standards

Coding Standards | Naming Convention

§ Reflect Repository Structure

§ Explicit binding with Revit models

§ Enable Searches

§ Drive sorting for Dynamo Player sequences

§ Use Notes to add detail to the graph

§ Rename key nodes in the graph appending a description
<Name> | <Description>

Coding Standards | Color Coding

§ Adopt existing standards (i.e. Autodesk)

§ Provide guidance to create graphs and
improve readability

§ Development and maintenance can be
picked up by someone else following
the same rules

Coding Standards | Templates

§ Graph General Info and search
keywords

§ Instructions

§ Known Issues and Limitations

§ Notes for Input and Output data
structure and variable type for scripts

§ Python and DesignScript templates (i.e.
Notepad++)

§ Clean Node Layout

Coding Standards | Autodesk Template

Coding Standards | Custom Nodes

§ Avoid custom nodes in the graphs to be
shared

§ Use Helpers to collect and recall
frequently used node structures

§ Organize the nodes in categories

Coding Standards | Helpers

§ Enable searches in the Library

§ Enforce Standards

§ Reduce time to compose graphs

§ Easier to maintain and update

Coding Standards | Packages Policy

§ Avoid relying on external packages

§ Create package to control source and
distribute approved functionalities

§ Use Node To Code feature before
deployment to reduce the risk of
connectors being moved

§ Restrict writing rights to Dynamo User
Group only

§ Enforce mirroring on local machines
overnight

§ Zero Touch is another option to
preserve IP (advanced)

Visual Programming

Variable Types

§ Integers

§ Doubles (with a decimal part)

§ Strings (texts in between speech marks)

§ Boolean (true or false)

§ Lists (indexed zero-based collections of
items)

§ Dictionaries (in Dynamo 2.0)

§ Objects

Defining Objectives & Relationships

Number Ranges

§ Start..End; a bounded range of numbers
(ending value is included)

§ Start..End..Step; a bounded range of
number with step (the ending value may
be not included in the output)

§ Start..End..~Step; a bounded range with
an approximate step (values are evenly
distributed, ending value is included)

§ Start..End..#Items; a bounded range of
a given nr. Of items

§ Start..#Items..Step; a sequence with
step and nr. Of Items

Lists

§ { a, b, c}; declares a list in Code Blocks, items separated by commas “,”

§ List[n]; returns the element in the list at the index n, if n is negative the count starts
from the end of the list

§ List[n][m]; returns the element in a sub-list at the index m of list n, if n is negative
the count starts from the end of the list

§ List[{i, j, k}]; returns the elements in the list respectively at position i, j and k

§ List[n..m]; returns the elements in the list between the indices n to m

§ Flatten(List); returns a list with the same amount of elements but without sub-lists

§ Create Sub-lists, Chop lists, etc.

List of Lists

Get Items at Index

Transpose List of Lists

§ When transposing a list of lists the data structure changes so that all elements at the
same index in each sub-lists are grouped together in the output

Lacing Strategy

§ Each node is a function and can iterate
over a list of inputs, this is how Visual
Programming handles loops

§ If the provided inputs have different
lengths, the lacing strategy on the node
is used to combine the inputs as
function arguments

§ The lacing affects the structure of the
output

§ Lacing Strategies
§ Shortest
§ Longest
§ Cross Product

Filtering, Grouping and Sorting

Boolean Expressions in Code Blocks

§ A == B equality

§ A != B inequality

§ A < B less than

§ A <= B less than or equal to

§ A > B greater than

§ A >= B greater than or equal to

§ && logical AND (true only if all the
arguments are true)

§ || logical OR (true if at least one
argument is true)

Filter By Boolean Mask
true : in = false : out

Grouping

§ Grouping by Key
§ Creates sub-lists grouping the items

based on a sequence of keys

§ Grouping by Function
§ Creates sub-lists grouping the items

based on the results of a function
applied to the items

Sorting

§ Sorting by Key
§ Reordering the items in a list based

on a sequence of keys

§ Sorting by Function
§ Reordering the items in a list based

on the results of a function

Dynamo-Excel Link

Write to Excel

§ Specify the file path including the
extension

§ Specify the target tab name

§ Specify the starting cell with row and
column index

§ Create the data by rows

§ Specify behavior (create new or update)

§ Excel will start automatically

§ It is possible to write to multiple tabs at
a time

Write to Excel | NOTE

§ Pay attention to Hexadecimal values
(i.e. those used for AutoCAD Handles) as
Excel gets easily confused with the 10^
notation

§ Use String.Insert and use the quotes to
make sure the values are passed as
strings in Excel

Read from Excel

§ Specify the file path (string)

§ Create a data stream in the memory
(File object)

§ Specify tab to read the data from

§ Read As Strings will convert all the data
to text

§ Excel will start automatically

§ Use Deconstruct to split the headers

§ Use Drop Items for a custom # rows to
skip

Write to CSV

§ Similar to Excel but there are no tabs,
rows or columns

§ There is no output of the node

§ Excel does not start

Write to CSV | Python

§ Fidelity of data types

Read from CSV

§ Specify the path (string)

§ Create the data stream in the memory
(File)

§ Read content by rows

Import from CSV

§ Specify the path (string)

§ True reads content by rows, false by
columns

§ Does not convert strings

Read from CSV | Python

§ Specify path, fidelity of data type

Design Script

Language Blocks

§ Associative

§ Imperative (traditional scripting)

Custom Functions

§ def keyword, Name with Pascal case, output and parameters rank and types, can be
called in other CBs

Conditional Statements

§ Ternary operator, in line conditional statement

§ Boolean test ? Return value if true : Return value if false

Conditional Statements

§ If / Else only available in [Imperative] language block

Loops

§ For / While only available in [Imperative] language block

Design Script Syntax

§ Dynamo nodes are functions, they can
called in a Code Block by name

§ The input ports on nodes represent
the arguments of the functions

§ Retrieve an element from a list at
position “n”:
§ x = list[n];

Design Script Syntax

Design Script Syntax

Replication

§ Visual programming technique to
represent iteration

§ Nodes can accept a list in place of a
single value

§ Doing some operation for all elements
in a set for a certain number of times
where each operation runs
independently

§ Replications can be nested and create
an extra level in the output list

Rank

§ Integer number that represents the
dimensions of a list

§ Point rank 0

§ Point[] rank 1

§ Point[][] rank 2

§ Point[][][] rank 3

§ Point[]..[] arbitrary rank

Replication Computation

§ Cartesian, iterates through all the
elements in an input

§ Zip, iterates through two or more inputs
simultaneously and executes the node
with these elements together with other
inputs

Replication Computation

§ Depends on the difference between the
ranks of the argument (input) and the
parameter the node expects (internal
function)

§ Dk = Ak – Pk (skip arbitrary rank)

§ Loop until Dk = 0

§ If there are 2 or more Dk > 0 do Zip and
decrease Dk by 1

§ If there is 1 Dk > 0 do Cartesian and
decrease Dk by 1

Replication Guides

§ When the lengths of the arguments are
not the same

§ Control the Cartesian Replication order

§ Append one or more <n> or <nL> to the
arguments

§ Different replication levels

§ Levels enforce iteration

§ Processed before replication happens

§ At a given level sort the replication
guide values

§ Apply Zip for equal values and Cartesian
for the rest

§ If all values are different is a Cross
product

Applications

Geometry Library

Trigonometry

Create a range: 0..360..10;

Geometry Objects

Dynamo Geometry Types

Vectors, Planes, and Coordinate Systems

Vector

Plane

Coordinate System
XYZ = RGB

Points

Curves

NURBS + Polycurves

Surface

Solids

Boolean Operations

Automation Applications

Excel Interoperability
Data Transfer Tool

Revit – Data Mining

Computational Design

Access Open Street Map Data

Revit – Model Authoring

Revit – Fixed Dimensions Panels on Surface

Revit – Rebar (2016+)

Robot Structural Analysis – React Struct

Revit – Drawing Production

Revit – Drawing Production

Revit – QR Codes for Asset Management

Shape Analysis

3D Coordination

AutoCAD-Revit

Civil 3D

Dynamo for Revit

Select Revit Elements

§ Pick an object (instance, face, edge)

§ Window select many instances at once

§ Select All Elements By a common
characteristic (element type, category,
family type, level)

Get Parameter Value By Name

§ Revit objects (families, views, family
types, etc.) are all ELEMENTS and they
all have a specific set of PARAMETERS

§ A parameter is a container with a name
and a value

§ The value the user is presented may be
different from the one stored internally
in Revit (use Revit Lookup add-in for
more detail)

Set Parameter By Name

§ Each parameter has a specific Storage
Type and a specific range of values that
can actually be assigned

§ Use the Revit Lookup and the Revit SDK
for more details

§ When using Dynamo you don’t need to
worry about the unit conversion for the
parameter value

Create Revit Elements

§ The geometry entities in Dynamo can
define the location or the geometrical
definition of Revit objects (points for
family instances, curves for walls and
structural framings, closed loops for
slabs, etc.)

§ Once created the elements are
persistent for the Revit session (even
closing and reopening Dynamo) but
closing Revit will definitely break the tie

§ First create the element, then change its
parameters

Revit Coordinate Systems

Revit Coordinate Systems

§ Implicit coordinate systems
§ Internal (not visible)
§ Local Coordinate System -> Project Base Point
§ World Coordinate System -> Survey Point

Project Base Point

§ Visible under Site category

§ It is always parallel to the screen sides

§ Contains an angle value

§ NEVER unclip

Survey Point

§ Visible under Site category

§ It is always parallel to the World
Coordinate System

§ If it remains clipped identify the Origin
of the WCS

Internal Coordinate System

§ All the objects created through the API
or Dynamo are referring to the Internal
Coordinate System

§ By Default the Project Base Point is
sitting on top of the Internal origin, that
is why the PBP should never be
unclipped

Shared Sites

§ It is possible to define multiple site
locations and orientations for the same
project document

§ These are called shared sites or named
locations

§ These allows to coordinate multiple
files to each other

Manage multiple shared sites

Linking RVT with multiple shared sites

§ Every instance of the RVT link can be set
to a particular shared site
§ Select the link
§ Enable the shared coordinates
§ Select the proper shared site

Total Transform & Coordinate System

§ In Dynamo terms the Revit Shared Sites are Coordinate Systems objects that
transform the coordinates from the local origin to the WCS and vice versa

§ Extracting point coordinates from Revit or reading point coordinates from Excel
require transformation

Dynamo & Python

Python

§ PROs
§ Easy to understand and maintain,

simple and yet powerful
§ Ideal for prototyping and learning
§ Productive and flexible
§ Large users community
§ Many custom modules
§ Present in Dynamo

§ CONs
§ Not intended for compiling

(interpreted language)
§ Speed can be an issue > PyPy
§ Debugging can be cumbersome

(errors show up at runtime only)
§ A lot of white space due to

indentation
§ Not officially supported for API

Python Learning Resources

§ Iron Python Documentation installed on
your machine

§ Courses online learning platforms
§ i.e. Lynda.com

§ Many blogs
§ i.e. http://planetpython.org/

§ Many videos on YouTube

§ AU lessons and handouts

§ http://www.revitapidocs.com/code/

Python Script Nodes

§ Two nodes to use Python scripting

§ Load .NET namespaces

§ Access Revit API in process

§ More on DynamoPrimer.com

§ Tip
§ Use an external editor and then copy

and paste the code in the node
§ Create your own modules to expand

the functionalities

Python Editors

§ PyCharm

§ Sublime Text

§ Visual Studio / Visual Studio Code

§ Atom

§ Spyder

§ Ninja Python

§ …

§ PEP 8 / PEP 257 for coding style

https://www.python.org/doc/essays/styleguide/

Python Syntax

§ Being consistent with the indentation is
very important

§ “Soft” Tabs: when the user presses the
TAB key the editor places a number of
spaces instead (usually 2 or 4)

§ Breaking lines is allowed in Python but
it can lead to mistakes

Python Script Nodes

§ The inputs have the key “IN[#]” that
reflects the node interface

§ They cannot be changed to report a
different name on the UI

§ The output has the key “OUT” that
reflects the node interface

§ It cannot be changed to report a
different name on the UI

§ Use notes to describe the input and
output structures and data types

Iron Python | .NET Compatible

§ Interpreted Programming Language
(no need to compile)

§ Statement grouping via indentation

§ IronPython 2.7.3 installed with Dynamo

§ .NET capabilities (i.e. Revit API)

Syntax

§ Case sensitive

§ # at the start of the line is a single line
comment

§ “””…””” comments multiple lines in
between

§ End of the line is the end of statement

§ Indentation can be done using spaces
or tabs at the beginning of the line

§ Add spaces for readability (i.e. x = 2 + y)

Variables

§ The name of a variable is a pointer to a
location in the memory

§ A variable must be declared before it
can be used in a given scope

§ The = sign is used to assign a value to a
variable

§ The same variable can refer to different
data types

§ Keywords are not allowed as variable
names and they are usually highlighted
in the editor

Data Types

§ Integers : int (i.e. 1)

§ Numbers : float (i.e. 1.0)

§ Strings : str (i.e. “1.0” or ‘1.0’)

§ Booleans : True / False (i.e. 2 > 1)

§ Null value : None

§ …

Data Types

§ Dynamo
§ Integers (i.e. 1)
§ Numbers (i.e. 1.0)
§ Strings (i.e. “1.0” or ‘1.0’)
§ Booleans (i.e. 2 > 1)
§ Null
§ …

§ Python
§ int
§ float
§ str
§ True, False
§ None
§ …

Boolean Operations

§ not A : negates A

§ A and B : True only if all the arguments are True

§ A or B : True if at least one of the arguments is True

§ A == B : equality

§ A != B : inequality

§ A < B : less than

§ A <= B : less than or equal to

§ A > B : greater than

§ A >= B : greater than or equal to

Collections

§ Zero based collections of values

§ Array / List defined via [,]

§ Typed Array defined via Array[T]([]) where T is the type

§ Tuple defined via (,)

§ Set defined via set()

§ Dictionary defined as { key1 : value1, key2: value2, … }

§ Get an object from a collection knowing its indexed position or its key:
§ alphabet[2] = “c”

Conditional Statements

if Test :

do something

elif newTest :

do something different

else :

final case

Loops | While

while Test :

do something

§ The loop will break only when the Test
returns False

§ It is very easy to make a mistake and
create infinite loops

Repeat instructions in the body until a condition is met

Loops | For

for iterator in collection :

loop instructions

range() : creates a sequence of numbers
in arithmetic progression

len() : returns the amount of elements of
a collection

break : exits the smallest enclosing loop

continue : moves on to the next value of
iterator

pass : does nothing

Traverse a list and repeat the instructions a given amount of times

Enumerate

for key, value in enumerate(collection) :

loop instructions

The enumerate() function returns
simultaneously a reference to the index
of an item in a collection (key) and a
reference to its value

This allows to use the same index across
multiple collections

Named Function

§ Set of instructions that can be recalled
in the body of the code as many times
as needed

§ Easier to read and maintain

§ Call itself in its definition (recursion)

§ Can be used for sorting

§ Arguments are optional > use defaults

§ Parameters (definition), Arguments
(call)

§ Return is optional (None)

def fn_name (par0, par1, par2, …) :

list of instructions

return output

A function is an object

Python Variable Reference

§ In Python variables are simply names
referring to objects in the memory

§ Arguments passed to functions by
reference

§ Objects can be mutable or unmutable
§ Mutable: List, Dictionary, etc.
§ Unmutable: int, str, etc. (hashable)

x = []

y = x

y.append(10)

print ‘X = ’ , x

print ‘Y = ‘, y

Output

X = [10]

Y = [10]

X is the name of the variable
point to the object in the
memory

Y is a new variable pointing
to the same object in the
memory

The List is mutable and it is
possible to add an item to it

Both X and Y are pointing to
the same object in the
memory, the value assigned
to the variables is the same

Lambda Forms

§ Small functions made of a single
expression

§ Used whenever a function object
is required

§ sorted() Python Built-In sorting
function

§ Optionally lambda forms can be
used as key for sorting

§ Optionally the collection can be
reversed

lambda arg0, arg1, arg2, … : # use the arguments

collection = sorted(collection, key=function,
reverse = True)

points = sorted(points, key=lambda k : k.X)

Anonymous functions

Comprehension

§ Concise syntax to apply filters and
functions on a collection of items

§ It can return:
§ List []
§ Tuple ()
§ Dictionary {}

§ Very useful in Revit API filtering /
sorting

§ It’s the equivalent of for loops and if
statements but in one line

§ It can be used to “flatten” a multi-
dimensional array

a = [function(i) for i in collection if Test]

mda = [[0, 1], [2, 3]]

flat = [a for row in mda for a in row]

Context Manager

§ A construct that safely disposes an
object when the focus exists the “with”
scope

§ Used to interact with databases (files,
transactions, etc.)

§ It prevents to do harm to the
documents and applications the code in
interacting with

with Object as variable :

do something to the Object

the Object will be safely disposed

Debugging in Python for Dynamo

§ Traceback call with a reference to the
line containing an Error or Exception

§ The name of the Exception gives an idea
of what the problem might be

1. Syntax

2. Functions arguments

3. Instructions evaluation

4. Input values

Try / Except

§ The instructions in the “try” scope may
fail

§ The “except” scopes can be introduced
to catch and handle different scenarios

§ If the error type is not specified, all
sorts of errors will be caught (even
typos!)

§ Once the error is handled, the code can
continue

try :

try to do something

except Error1 :

do this if Error1 is encountered

except Error2 :

do this if Error2 is encountered

except :

this catches all kinds of errors

Built-In Exceptions

Operating With Files

§ Context manager to safely interact with
files on the hard drive

§ OpenMode:
§ Reading ‘r’
§ Writing ‘w’ (overrides the content)
§ Append ‘a’

§ ‘ab+’ means appends with a binary
format and it can also read from the
source (+)

with open(“filepath”, OpenMode) as f :

do something

File.readline()

File.write()

Operating with CSV files

§ csv module included with Python

§ csv.writer.writerow() takes a list of
values and appends a row to the CSV
file

§ csv.reader returns a rank 2 array
containing the rows

Operating with XML
Extensible Markup Language

XML Namespace

XML Element

Attribute

InnerText

Python XML module | Element Tree

§ Built-in module xml.etree.ElementTree

§ Parse a file from source or string

§ Find elements by tag

§ Get and Set attributes of existing XML
elements

§ Get and Set elements text

§ Create new SubElements

Reading and Writing XML | System.Xml

§ Add reference to System.Xml

§ XML Namespace, XML Document, XML
Element, Attributes

§ Understand / define the schema to
adopt

§ Select nodes using Tag name or Xpath

§ Example: reading a Navisworks clash
report

Reading and Writing XML

Operating with JSON

§ Java Script Object Notation

§ Python built-in module json

§ It is possible to read and write a file

§ It supports custom Encoding and
Decoding

§ Very good performance, human
readable

Persistence

§ Multiple options
§ pickle (dedicated Python module)
§ XML
§ CSV
§ JSON (very popular for web)

§ Restore values and objects between
executions

§ It can be used to store the results of
expensive calculations and improve
performances

§ Dictionaries are the best structures to
read and write data

Serialization of data

Object Oriented Programming

Object Oriented Programming

§ Classes
§ The blue-print of objects from which

individual objects are created
§ Define properties and methods
§ Can be inherited from other classes

§ Objects
§ They all have state (properties)

and behavior (methods)
§ Objects are instances of classes

Based on Classes (or types) and Objects (or instances)

Object Oriented Programming

§ Inheritance: parent class and
descendants, abstract classes

§ Polymorphism: code can be called on
objects regardless they belong to
parent or descendants classes

§ Encapsulation: access modifier (public,
protected, private)

§ Open Recursion: object methods can
call other methods on the same object
including themselves (self)

§ Class Members
§ Properties define the state of an

object
§ Methods define how an object

behaves

§ They can be called via the “dot” notation
§ p.X # returns the x coordinate property

§ p.Add(q) # performs an action on the object

Basic principles

Python Classes

class Person :

“”” Description of the object.”””

def __init__(self, _name, _age) :

self.Name = _name

self.Age = _age

def __repr__(self) :

return ‘Person(Name={0}, Age={1})’.format(self.Name, self.Age)

Pr
op

er
tie

s

In
iti

al
iz

at
io

n
M

et
ho

d

Cl
as

s
De

fin
iti

on

Python Classes

§ The keyword class defines a class

§ The keyword self is used to refer to an object (an instance of the class) in its
definition

§ Use the keyword self to refer to properties and methods defined in the class

§ Define attributes and members to enable common behaviors such as:
§ String representation
§ Comparison

§ Use dir(object) to access the class members

Decorators

§ A design pattern that takes a function
and wraps it into another function

§ Used to customize the behaviors of
class members at runtime

§ Define read only properties

§ Define class and static methods

§ @decorator

Namespaces

§ An organized collection of classes

§ Compiled in .DLL files or in the GAC

§ Defined in Python (.py) files

§ IronPython add reference

§ Import classes to make their names
available in the code (either all or a
subset of those present in the
namespace)

§ Define aliases for disambiguation

import System

from Autodesk.Revit.DB import *

from Autodesk.Revit.UI import TaskDialog, Selection

from Autodesk.DesignScript.Geometry import Point as DSPoint

Python Modules

§ A Python file can contain multiple
classes definitions and can be
referenced in another file

§ __all__ is a list of names of the objects
defined in a Python file that are
available when using import *

§ Defining a folder with a name and a
__init__.py file defines a Python
module

§ Python modules can be downloaded to
expand the available classes (numpy,
shapely, etc.)

Python PEP8 Style Guide

§ Standard for Python code development

§ Ensures readability

§ Facilitate maintenance

§ Helps in understanding better a code

§ Conventions for naming files, constants,
variables, functions, parameters,
classes, methods, properties, etc.

§ Documentation strings to be included in
the definitions (__doc__)

§ Link

https://www.python.org/dev/peps/pep-0008/

Revit API Introduction

Revit API | Resources

§ Software Development Kit (SDK)
§ RevitAPI.chm

§ The Building Coder (Jeremy Tammik)

§ Revit LookUp add-in

Revit API | Main Namespaces

§ Autodesk.Revit.DB
§ Access to the Database object and

its children
§ Document
§ Elements

§ Autodesk.Revit.UI
§ Access to objects that allows the

user interaction with Revit
§ Selection
§ Messages

Revit API | Application

§ An object that represents the instance
of the Revit application that is running

§ It contains a reference to the
Documents loaded (active projects and
links)

§ It allows to access the Revit application
settings

Revit API | UIDocument

§ An object that represents the current
active project presented to the user

§ It contains the methods necessary to
interactively select items, the result is a
collection of Reference objects

§ It allows to present messages to the
user via TaskDialog (also useful for
debugging)

Revit API | Document

§ An object that represents a Revit file
(project .rvt or family .rfa)

§ It has properties to define the file (Title,
PathName, etc.)

§ It has methods to retrieve objects and
modify the content
§ GetElement(),

FilteredElementCollector(), …

Revit API | Element

§ The base object for most of the Revit
items (inheritance and polymorphism)
§ Instance
§ ElementType
§ Wall
§ …

Revit API | Parameters

§ Every Element object has a specific set
of properties that help describe the
object in more detail

§ They can be Built-In or added via
Shared Parameters file

§ Object parameters are retrieved not in
any particular order so it is important to
be able to filter and sort them

Revit API | Parameters

§ Parameters value can be read-only and
of a specific data type (StorageType)

§ The internal units may differ from the
Display Unit Type

§ To set parameter values there is need
for an open Transaction

Revit API | Transaction

§ Allows to safely access to the Document
database

§ The name in the “undo” history

§ The transaction can Start, Commit if
successful or Rollback if not

§ In Python use the with statement to be
sure to handle the database correctly

Transaction example

with Transaction(doc, “TransactionName”) as t :

t.Start()

do something

t.Commit()

Transaction.Rollback() restores the Document to the same state as before the
Transaction started.

If the code fails in the with scope Rollback is used.

Revit API | Transaction Groups

§ An object to execute multiple
Transactions without cluttering the
Undo commands list

§ The transaction can Start and
Assimilate the internal Transactions

§ In Python use the with statement to be
sure to handle the database correctly

Transaction Group example

with TransactionGroup(doc, “GroupName”) as tg :

tg.Start()

with Transaction(doc, “TransactionName”) as t:

t.Start()

do something

t.Commit()

t.Start()

do something else

t.Commit()

tg.Assimilate()

Revit API | Create

§ Document.Create for project
§ Walls
§ Floors
§ FamilyInstances
§ …

§ Document.FamilyCreate for family
§ Extrusions
§ Sweeps
§ Lofts
§ …

Revit API | GeometryElement

§ To create, change or delete a geometry
object in Revit API it is not necessary to
open a Transaction

§ GeometryElement is the geometrical
representation of a Revit object

§ An element can contain more than one
GeometryObject

Revit API | GeometryObject

§ Quite often in Revit API it is necessary
to create the GeometryObject that
defines a Revit object to create it

§ The kind of GeometryObject needed may
vary depending on the nature of the
Revit object

§ It is possible to use Dynamo geometry
objects for this purpose but they must
be converted first

Revit to Dynamo | Conversions

§ Revit
§ XYZ (point)
§ XYZ (vector)
§ GeometryObject
§ Revit ElementType

§ Dynamo
§ ToPoint()
§ ToVector()
§ ToProtoType()
§ ToDSType()

Dynamo to Revit | Conversions

§ Dynamo
§ Point
§ Vector
§ Geometry Object
§ RevitNodes

§ Revit
§ ToXyz()
§ ToXyz()
§ ToRevitType()
§ UnwrapElement(element)

Next Steps

GitHub / DynamoDS

§ Open project

§ Wiki pages (lost of pieces are missing)

§ Examples and resources

§ Report a bug

§ Propose a different approach

Zero Touch Essentials

§ Load a DLL into one session

§ New shelf in the Dynamo Library

§ Written using C#

§ There is no “new” keyword

§ All the method are static

§ Multi-return nodes using
Dictionary<string, object>

§ Pay attention when creating geometry
objects (dispose the variables or
encapsulate in “using”)

§ Objects life cycle for larger applications

Garbage Collector

§ Dynamo GC is different from .NET GC

§ Dynamo GC delete objects at the end of
a cycle and it calls the Dispose()
method if it is implemented

§ .NET GC frees memory when it is
necessary

§ Dynamo GC comes before .NET’s GC
(except in case of crash or errors)

Trace and Element Binding

§ In general at each iteration objects are
deleted and recreated and this could be
an issue
§ An object can affect other objects
§ Changing an object could be cheaper

than a new creation cycle

§ Trace register the ID of an object in the
Thread Local Storage (TLS) and lookup
to it to re-associate the object of
previous executions

§ Mark attribute [RegisterForTrace(ID)]
on the method

Custom Nodes UI

§ Implement a NodeModel object

§ Override the methods

§ WPF to generate the node interface

§ Create ViewExtensions to customize
menus, node appearance and behavior
or introduce new features

Myths and Truths

§ Don’t need to know how to code to use
Dynamo

§ Dynamo is only for modeling

§ Dynamo = Revit API

§ Once you go .NET you never go back

§ Need to understand how to build logical
structures

§ Dynamo geometry engine is very powerful but
it can be used for data mining also

§ Not all the methods are available

§ It works with the localized version of Revit
parameters names must be in the same
language

§ Revit is just the first big application but it’s
not the only one

§ The more one knows the better

§ Broader choice of tools to work with

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their
respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.
© 2018 Autodesk. All rights reserved.

