
One-Click Model Reports:
Connect Revit to the InDesign API
Oliver Green & Aaron Perry
Allford Hall Monaghan Morris

Thanks for Joining Us

Introduction
About AHMM, Digital Design Group, Speakers

Model Reviews
Overview of our Model Review Process, QA at AHMM

InDesign’s API
Introduction to InDesign API, Interprocess Communications

Automated Model Reviews
Assembling Everything Into a Finished Product

Session Overview

About AHMM

AHMM is a large architecture firm (480+) with
offices in London, Bristol and Oklahoma

Works across all sectors and sizes

Stirling Prize winners 2015
AJ100 Practice of the Year 2018
Building Magazine Practice of the Year 2018

Allford Hall Monaghan Morris

Digital Design Group

Within AHMM, the Digital Design Group offers full time
project assistance in all areas of Digital Design
strategy, application support, content and
computation

The DDG develops and tests strategies for model
maintenance, best-practice workflows, training,
standards and QA

AHMM has extensive experience developing custom
tools in-house to assist architectural teams

Office-Wide Support

Practice BIM manager and lead of AHMM's digital
design group since 2015

Responsible for digital design across the entire
practice, its multiple offices, stretching all live and
future projects. This involves mitigating risk,
engaging client / contractor, managing
infrastructure and software, driving change and
inspiring staff to embrace digital design authoring,
review and visualisation technology

Aaron Perry

About the Speaker

Designs and develops custom tools to assist
AHMM’s architects. This involves anything from
building design tools, model analysis, data
management to full process automation

Formerly worked as an architect
Before that, a video games designer

Self-taught developer, using Python, C# and
Dynamo in daily work

Oliver Green

About the Speaker

The Value of Model Metrics?

We could never open all models and manually review them on a weekly basis. It is very difficult to know when something
is going wrong on a project, updates from some teams is very light.

AHMM run a monitoring tool that records all usage of Revit. When key activities occur on a project, we are notified.
Healthy/unhealthy projects and comparison, Training/Support requirements and cross projects business insights.

Digital Projects Dashboard

I don’t know what you don’t know

Custom AHMM assessments to understand where knowledge gaps exist for us to then develop a training
roadmap/plan

KnowledgeSmart Assessments

AHMM run regular training sessions almost every day
40+ Internally-developed training courses - from 1 hour workshops to full day Revit training sessions
Our experienced team delivers training in a standardised way, contextualised within the way we work at AHMM

Training Courses

A detailed 40-page InDesign document we prepare for each project per stage
Some parts automated export from Revit, other parts human-authored commentary

Not just a data export; a way of measuring Revit skills & imparting applied knowledge

Model Reviews

Not Just a Technology Talk

We develop our own tools in-house to allow for custom UI, high-performance functionality that meets our needs.
A library of pre-built and audited content, Dynamo & Python scripts, our C# Revit Ribbon (+ WPF front-end)

Whatever we can do to "let architects be architects"

Development at AHMM

We use InDesign at lot at AHMM - it's powerful, flexible and creates beautiful reports that are easy to edit
Automating InDesign has been on our wish list for a long time

Not just for architects – potentially helpful for all parts of AEC

Digital Coordination Report

Last Year's AU London Presentation was also about creating reports
A different take - using Dynamo. This is more manual, but more accessible technologically

Also a talk about data visualisation and displaying accurate information in a succinct way

AU 2018 Presentation

Initial forays streamlining InDesign workflows – best practice templates, styles and using Text Variables
We created Dynamo definitions to generate images highlighting aspects of the model

This saved lots of time... but still involved lots of manual copy-pasting data from an Excel export!

Semi-Automated Model Review

A year ago we demonstrated generating 536 Room Data Sheets in 1 minute
InDesign’s database publishing tool – combines structured data with a page template

We wanted the ability to generate the kinds of InDesign documents a user would normally create – from scratch

AU 2018 Datamerge

Initial Explorations

Initial research showed yes - there’s an InDesign API, and an SDK with documentation
Downloaded SDK & read through docs. InDesign Server or short, simple scripts

Lots and lots of JavaScript mentions, some TypeScript and AppleScript

InDesign SDK

Documentation online and in downloadable SDK
Some helpful, but incomplete 'mind maps' online. Not always intuitive

Wanted a fully .NET-based solution if possible; easier to integrate with existing Revit / WPF tech we use

InDesign API Documentation

Documentation online and in downloadable SDK
Some helpful, but incomplete 'mind maps' online. Not always intuitive

Wanted a fully .NET-based solution if possible; easier to integrate with existing Revit / WPF tech I use

InDesign API Documentation

Early 2019 I started reading about InDesign's API in depth - I found just a few examples using C#
Example script would open a new InDesign document and create five blank pages

Being able to see a test script implied it should be possible to create something in C# that talks to InDesign

C# Examples

Thank You user3791372!

This was the initial script I read (on Stackoverflow) that I based our proof of concept on.

Sometimes, this is all you need to set off developing something.

Simple Proof of Concept Workflow

I put together a proposal for a 'minimum test case' to see if we could create a working proof of concept
Our end goal was to read a Revit model's information into a ready-made InDesign template

POC was to see if I could click a button in Revit that would open InDesign and a new document and edit it

Ribbon Buttons in Revit

We already had some experience with building our own ribbon, so I can give you an outline of what we did

There are two straightforward ways to launch your own code from the Revit ribbon: these are referred to as
ExternalCommands and ExternalApplications

Intro to External Commands

ExternalCommands & ExternalApplications

Both are a way of bringing external code into Revit
We used Microsoft Visual Studio as our "Integrated Development Environment" (i.e. where we write our code)

Written in C# using the Revit API's Classes
Code gets compiled into a .dll file and placed somewhere Revit can see it (e.g. AppData)

On Revit application startup, it loads in these resources

With both approaches the .dll file will also contain the code that fires when you launch your command or click on
each custom-made button

Within this code, you can access Revit's API to make adjustments to the model just like in a Macro

Visual Studio Overview

Visual Studio is the program everyone uses to
compile their Revit addins

It's a code-editor, a UI designer, database
administration tool, debugger, and more all in a
single program

It's where we compile all our scripts together into
a single DLL, which Revit can then run

ExternalCommands

If your tool is an ExternalCommand, Revit will read
the .dll file and load it in as a button

This button will appear in Revit under the Add-ins
tab in the External Tools drop-down menu

The ExternalCommand approach is a bit like firing a
macro - it's a one-off command you're launching

ExternalApplications

If your tool is an ExternalApplication it probably
lives in its own custom Revit ribbon tab

Revit reads your .dll upon opening and creates
your ribbon tabs, ribbon panels and buttons

The Revit ribbon buttons essentially fire off their
own ExternalCommands, but there are some
differences

The ribbon is always accessible from within Revit,
meaning you can retain data between tool runs

Further Reading

If you'd like to learn how to build your own custom
Revit ribbon, or ExternalCommand button I would
recommend archi-lab's blog

http://archi-lab.net

Clear step-by-step instructions on how to build
ExternalCommands and ExternalApplications from
scratch

If this helps you, consider supporting Konrad!

Back to Proof of Concept

We want our code to fire when we press a button in Revit, so we're using an ExternalApplication to create our
custom AHMM ribbon and place buttons in there. These buttons will fire off our custom code.

Next, we want to learn how to open an instance of the InDesign application from within our custom code.

ExternalCommand or
ExternalApplication
using Visual Studio

Interprocess Communications

Revit is a Windows application and it runs on top of the .NET Framework
Microsoft's .NET Framework is the lower-level architecture that unifies software running on a Windows machine,
provides important class libraries and resources.
This let us have conversations with other applications, access external servers, databases, run tests, etc

We have access to all different parts of Windows to play with if we want - can access speakers, webcams, files

Revit and the .NET Framework

Windows provides many approaches for sending data between applications - 'inteprocess communication' (or
IPC) is one fo them. Refer to MSDN Website for developers who want to develop on top of Microsoft systems

"Interprocess Communications" just means getting pieces of software to talk with one another

I found this page, which outlines multiple IPC technologies: IPC, Sockets, Data Copy, Pipes...

Interprocess Communications

COM is old (1993) technology but is still supported by .NET using the System.Runtime.InteropServices namespace.
For instance, Dynamo's Bumblebee package uses COM to open & edit Excel documents

Spoiler Alert: As we will see later, this is the approach I would have to use

COM (Component Object Model)

Visual Studio Setup

Back to Visual Studio

Our code in Visual Studio would need to bring
everything together.

It's where we have the code for creating our Revit
ribbon, buttons and model review functionality
(e.g. counting the number of warnings).

It's also where we need to have the code which
launches and manipulates InDesign.

Add Reference to InDesign API

The online script had lots of reference to
InDesign's native classes (such as Page)

In order to resolve these references, I needed to
add a reference to InDesign's API

I was entirely sure how to do this so, some
Googling later, I found it's called
ResourcesForVisualStudio.tbl, which is a COM
type library file

That's how I knew I was going to use the COM
approach to Interprocess Communications

Add Reference to InDesign API

If you have InDesign installed, you can find it at:
C:\ProgramData\Adobe\InDesign\Version
11.0\en_GB\Scripting Support\11.0\Resources for
Visual Basic.tlb

(Exact path address depends on Version but will
be almost exactly the same)

Right-Click on your Solution > Add Reference >
Browse and select .tlb file

Add 'using InDesign; to your using directives at
the top of your C# file, references should resolve

Note: COM error messages are almost worthless!

Fixing COM Error

Find your InDesign .tlb file and delete it
Then run InDesign as Administrator
This will recreate the .tlb file, which should no
longer throw an error

The test script worked, opening InDesign and
creating 5 new blank pages!

Tested on Revit 2017/2018/2019.
Windows 10 with InDesign CC

ExternalApplication is compiled to x64
architecture / solution platform.

Back to Proof of Concept

We create an instance of the InDesign application using COM's Activator.CreateInstance() method. This gives us a
handle on an opened session of InDesign.
From here, we need to create a Document to edit. I create a blank document as a proof of concept.
Once we have a Document we can do nearly anything we want to. In our example code we created five pages.

ExternalCommand or
ExternalApplication
using Visual Studio

Use COM
Activator.CreateInstance()

Use InDesign's API
Application.Documents.Add()

Use InDesign's API
inDesignDocument.Pages.Add()

Preparing The Model Report Process

What Can We Automate?

Proof of Concept worked so I printed out our Model Report and marked up in red what I thought we could automate
It was a lot, maybe 80% of the information in the report

Around 40 pages - a structured & formatted report, made up of a mix of tables, images, critical commentary

Full Proposed Process Diagram

Having marked up our report I could differentiate different key tasks our tool would need to complete
We already demonstrated we had working access to the InDesign API from within Revit

Next, I had to work our if, and how, these could be automated in code

1. Pop-Up Dialog for Input Info

The process would seek to confirm a few key
values from the user at the start of each run

This is a WPF pop-up dialog window to let users
enter the project name and number

Where possible, they are pre-populated from the
Project Information parameters, but ultimately
having a user confirm they're useful and valid
values

2. Create New File from Template

I would need to begin the process by opening an instance of the InDesign application using COM.
I found examples of how to do this online. I needed to specify InDesign.Application as the type, as Revit has its
own native Application Type

Type type = Type.GetTypeFromProgID("InDesign.Application");
InDesign.Application indesignApplication = (InDesign.Application)Activator.CreateInstance(type);

Activator.CreateInstance is used to open the application, which I cast back to the InDesign.Application type,
allowing me access to the application's members (methods, events, properties, etc)

Finally, I was able to open an copy of an existing template file and create a handle for it:
InDesign.Document inDesignDocument = inDesignApp.Open(TemplatePath, true, idOpenOptions.idOpenCopy) as
InDesign.Document;

2. Create New File from Template

3. Find & Replace Text

With the template copy open, we can get to work!

The first edit I'd want to make would be to target
specific placeholder words in our Model Review
template and replace them with meaningful
values

The template we designed for automation
purposes was created full of placeholder words
for certain values, such as "There are NoWarnings
in the model". I wanted to build a method to
switch out these placeholder values

3. Find & Replace Text

The InDesign API has find & replace functionality using GREP - Global Regular Expressions Print.
GREP operations are very quick & efficient, using regular expressions
I created a method called FindAndReplaceGREP():

void FindAndReplaceGREP(string stringToFind, string stringToReplace) {
inDesignApplication.ChangeGrepPreferences //to initially set up parsing rules. These will not change
inDesignApplication.FindGrepPreferences.findWhat = stringToFind;
var findGrep = inDesignDocument.FindGrep();
inDesignApplication.ChangeGrepPrerences.changeTo = stringToReplace;
inDesignDocument.ChangeGrep(); }

With that method set up, this is all that's required to find and replace text within the target document

3. Find & Replace Text

I created a 'GREP Dictionary', which is just a
dictionary to associate certain specific words to
their replacement values

Then I could iterate through all entries in this
dictionary to set the values I wanted, while
keeping all data together

4. Update Text Variables

I wanted to target the document's Text Variables,
which are defined once and implemented in many
places across the document

Accessed via Document.TextVariables which returns
a list of TextVariables we can loop through

In a similar manner to my 'GREP dictionary', I
created a 'Text Variables Dictionary' to associate
text variable names to their values

The values can be set using
TextVariable.VariableOptions.Contents

5. Target Tables & Input Data

Tables were difficult to access because the API is a
bit odd in places

Tables cannot be accessed conveniently using
Document.Tables, or even Page.Tables

They are accessed as Document > Pages >
TextFrames. Tables are a kind of TextFrame, but so
are normal text boxes in InDesign

There are tests to determine which is which, but
this all seemed a bit backwards as I wanted the
ability to target specific tables

5. Target Tables & Input Data

In InDesign all elements have an arbitrary ID
number, like 6 or 52

The InDesign API lets us select items by their ID

But it would be a bad idea to hard-code the IDs of
each table in the template; this could easily change
as I make new copies of or update the model review
template

I wanted an approach to guarantee I was selecting
the right table every time, regardless of its ID

5. Target Tables & Input Data

However, InDesign lets you apply something called
'Script Labels' (readable strings) to elements

We can't search for elements by their Script Label.
Therefore, I created a dictionary to map each table
(with its script label) to its internal ID when the
ExternalCommand first runs

This would let us create a method to search for a
table by its label and have it returned to us
(courtesy of its ID)

5. Target Tables & Input Data

We can't access a document's Tables directly

Since tables are a subclass of TextFrame, we have
to iterate through all of these, querying whether
each TextFrame has a Script Label applied to it. In
order to access TextFrames, we need to iterate
through the pages in the document

We can do this and populate our Script Label / ID
reference dictionary. We need to create this
dictionary only once at the start of our script run

We can then use it for reference to look up Tables

5. Target Tables & Input Data

I created a method called FindTable, which simply
takes the ScriptLabel name as its key, and which
returns the Table I'm after

We now have the ability to target specific tables by
their name

Table linkedRevitFilesTable =
FindTable("LinkedRevitFilesTable");

The table's contents are accessed via its Contents
property, which needs to be passed an array of
strings

6. Normal .NET Operations

There were some key values I wanted the report to
be able to display which I knew could be accessed
using the .NET class libraries

I read the current date and time and formatted
them using DateTime.Now.ToString("yyyyMMdd");

I set the Text Variable for the Report Author's name
to read their login name, e.g. OGreen, using
System.Environment.UserName

These were used to set Text Variables or for Find &
Replace operations

6. Normal .NET Operations

I used .NET's threading libraries and WPF to display
a live-updating progress bar

This updates in its own thread to get around Revit's
single-threadedness

Progress percentage was somewhat arbitrary; I
decided how many steps there were and wrote code
to update the progress bar after each step

How does one accurately reflect progress?
Seems to be a classic programming debate...

6. Normal .NET Operations

Finally, I used some Precompiler Directives in my
code to adjust certain operations for different
versions of Revit's API

For instance, I couldn't access the number of model
warnings via the Revit 2017 API to write this value
into our document

7. Launch UI Menu Commands

As the last step in our report generation, I needed
the ability to update the Table of Contents

This is normally accessed in the UI via the Layout
Menu > Update Table of Contents

Menu Commands in InDesign each have a specific
'Command ID'

I found a free Javascript script online, written by a
Lancaster-based typesetter called Peter Kahrel

7. Launch UI Menu Commands

The script creates a mini menu of all CommandIds
in InDesign

I could then sort these menu commands or search
using keywords to find the ID of the menu action I
needed (it was 71442)

I needed to find the TextFrame containing the Table
of Contents using its Script Label, and select it in
code using Application.Selection

7. Launch UI Menu Commands

Then I could use the MenuAction and
indesignApplication.MenuActions.ItemByID(71442);

To select the Action, followed by
menuAction.Invoke() to invoke the command

This Updated the Table of Contents

Live Demonstration

Conclusion

Our Model Review tool did everything we wanted it
to: copying a template, filling tables & key values

About 80% of the report's content was auto-
generated, saving many hours per model review

It was naturally limited in its scope:
"Let's not spent months on this, but what could we
reasonably achieve?"

It is certainly possible to take this further

Further Possibilities

Use Revit API to create isolated images of warning
elements / worksets, save an image and
dynamically update template's image placeholders

Intelligent commenting based on pre-existing
knowledge of filesize, RIBA stage and number of
elements in the model

Automatic formatting of paragraphs according to a
condition

Using WPF data visualisation libraries to create
charts & graphs (e.g. LiveCharts)

Now It's Your Turn

Have any reports you want to automate?

We have uploaded skeleton code samples to
AHMM's Github repository

We have just scratched the surface of what Revit
and InDesign's API can do together

Resources

archi-lab blog for very detailed posts on creating
ExternalCommands and ExternalApplications

The Building Coder blog for Revit API reference

InDesign's SDK for API docs and examples

YouTube: Jamie King's channel for helpful
explanations of C# concepts

Our Github - to get started

Thank You for Listening

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or
trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for
typographical or graphical errors that may appear in this document.
© 2019 Autodesk. All rights reserved.

http://www.autodesk.com/creativecommons
http://www.autodesk.com/creativecommons

	One-Click Model Reports:�Connect Revit to the InDesign API
	Slide Number 2
	Session Overview
	About AHMM
	Digital Design Group
	About the Speaker
	About the Speaker
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74

