Revit API Intro Labs	
 Lab 6 – Extensible Storage
Created by A. Nagy, May 2011
Updated by DevTech AEC WG
Last modified: 3/18/2012
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]
<VB.NET>VB.NET Version</VB.NET>
Objective: In this lab, we will learn how to use Extensible Storage mechanism to add custom data to a Revit element. During the course of building a command, we’ll also cover Selection Filter and Transaction. We’ll learn how to:
· Define a storage data “Schema” and attach an instance of it to an Revit element
· Use an ISelectionFilter to limit the selection to Walls
· Use manual Transaction mode
Tasks: We’ll write a command that creates WallSocketLocation Schema with two Fields, SocketLocation and SocketNumber, and attach its Entity (or instance) to a wall.
1. Ask user to pick a wall
2. Create our Schema with the two Fields
3. Create an Entity of the schema and set its field values
4. Assign the entity to the wall using SetEntity()

The following is the breakdown of step by step instructions in this lab:
1. Define a New External Command with Manual Transaction Mode
2. Create a Selection Filter
3. Create and Attach a Schema Entity to a Wall
4. Summary

1. [bookmark: defineExternalCommand]Define a New External Command with Manual Transaction Mode
We’ll add another external command to the current project.
1.1 Add a new file and define another external command to your project. Let’s name them as follows:
· File name: 6_ExtensibleStorage.vb (or .cs)
· Command class name: ExtensibleStorage

Required Namespaces:
In addition to the name spaces you have used, add the name space:
· Autodesk.Revit.DB.ExtensibleStorage
Below is the starting point of our new command. Notice that this time, we are using manual transaction:

<VB.NET>
' Model Creation - learn how to create elements

<Transaction(TransactionMode.Manual)> _
Friend Class ExtensibleStorage
 Implements IExternalCommand

 Public Function Execute(_
 ByVal commandData As ExternalCommandData, _
 ByRef message As String, _
 ByVal elements As ElementSet) _
 As Result _
 Implements IExternalCommand.Execute

 Dim uiDoc As UIDocument = commandData.Application.ActiveUIDocument
 Dim doc As Document = uiDoc.Document

 ' Create transaction for working with schema

 Dim trans As New Transaction(doc, "Extensible Storage")
 trans.Start()

 ' …

 trans.Commit()

 Return Result.Succeeded
End Function

End Class

</VB.NET>

2. Create a Selection Filter
Though this topic will be part of the UI Labs and that’s where its components will be explained, we’ll use PickObject() and ISelectionFilter in this lab as well. We simply need to create a class that implements the ISelectionFilter interface and its two functions: AllowElement() and AllowReference(). Let’s create it inside the ExtensibleStorage class:

<VB.NET>
Private Class WallSelectionFilter
 Implements ISelectionFilter

 Public Function AllowElement(ByVal e As Element) As Boolean _
 Implements ISelectionFilter.AllowElement

 Return TypeOf e Is Wall

 End Function

 Public Function AllowReference(ByVal r As Reference, ByVal p As XYZ) _
 As Boolean Implements ISelectionFilter.AllowReference

 Return True

 End Function

End Class
 </VB.NET>

Now we’ll be able to use an instance of this class when asking the user to pick an element in the user interface to restrict the selection to only walls.

Let’s ask the user to pick a wall, to which we want to add data, and then get back the wall from the returned Reference:

<VB.NET>
 ' Pick a wall

 Dim r As Reference = uiDoc.Selection.PickObject(_
 ObjectType.Element, New WallSelectionFilter)

 Dim wall As Wall = TryCast(doc.GetElement(r), Wall)
 </VB.NET>

3. Create a Schema and Attach an Entity to a Wall
To create a Schema, we use the SchemaBuilder object, which requires a GUID that will identify the schema later on. So let’s declare this GUID in our ExtensibleStorage class:

<VB.NET>
[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Private _guid As Guid = New Guid("87aaad89-6f1b-45e1-9397-2985e1560a02")
 </VB.NET>

Note: you could generate and use another GUID as well, using Visual Studio’s ‘Tools >> Generate GUID’ function.

Let’s start building our schema by creating a new SchemaBuilder instance and set its properties. We’ll set the Read and Write access levels to public. If we set it to Vendor or Application then we would also need to specify the vendor id for the schema using SetVendorId(). The vendor id is the Registered Developer Symbol (RDS) that can be created on this site:
http://www.autodesk.com/symbreg
Since vendor ids are not case sensitive, the string will be converted to upper case before it is stored in the schema.

<VB.NET>
[bookmark: OLE_LINK7][bookmark: OLE_LINK8] ' Create a scheme builder

 Dim builder As New SchemaBuilder(_guid)

 ' Set read and write access levels

 builder.SetReadAccessLevel(AccessLevel.Public)
 builder.SetWriteAccessLevel(AccessLevel.Public)

 ' Note: if this was set as vendor or application access,
 ' we would have been additionally required to use SetVendorId

 ' Set name to this schema builder

 builder.SetSchemaName("WallSocketLocation")
 builder.SetDocumentation("Data store for socket info in a wall")
 </VB.NET>

Add two fields to the schema. One will contain a location property and will be of type XYZ, and the other one will contain the id number of our socket, and will be of type string.
Once these are added we can call Finish() to create the Schema object.

<VB.NET>
 ' Create field1

 Dim fieldBuilder1 As FieldBuilder = _
 builder.AddSimpleField("SocketLocation", GetType(XYZ)). _
 SetUnitType(UnitType.UT_Length)

 ' Set unit type

 fieldBuilder1.SetUnitType(UnitType.UT_Length)

 ' Add documentation (optional)

 ' Create field2

 Dim fieldBuilder2 As FieldBuilder = _
 builder.AddSimpleField("SocketNumber", GetType(String))

 'fieldBuilder2.SetUnitType(UnitType.UT_Custom);

 ' Register the schema object

 Dim schema As Schema = builder.Finish
 </VB.NET>

Now we can create two Entity’s based on our Schema and assign them to the selected wall.

<VB.NET>
 ' Create an entity (object) for this schema (class)

 Dim ent As New Entity(schema)

 Dim socketLocation As Field = schema.GetField("SocketLocation")
 ent.Set(Of XYZ)(socketLocation, New XYZ(2, 0, 0), _
 DisplayUnitType.DUT_METERS)

 Dim socketNumber As Field = schema.GetField("SocketNumber")
 ent.Set(Of String)(socketNumber, "200")

 wall.SetEntity(ent)

 ' Now create another entity (object) for this schema (class)
 ' (This simply replaces the ent1 above. Just for testing.
 ' You may comment out for now.)

 Dim ent2 As New Entity(schema)
 Dim socketNumber1 As Field = schema.GetField("SocketNumber")
 ent2.Set(Of String)(socketNumber1, "400")
 wall.SetEntity(ent2)
 </VB.NET>

We could also list all the available Schema’s and the Fields available in our schema just to see if everything went the way we wanted it.

<VB.NET>
 ' List all schemas in the document

 Dim s As String = String.Empty
 Dim schemas As IList(Of Schema) = schema.ListSchemas
 Dim sch As Schema
 For Each sch In schemas
 s += vbCrLf + "Schema name: " + sch.SchemaName
 Next
 TaskDialog.Show("Schema details", s)

 ' List all Fields for our schema

 s = String.Empty
 Dim fields As IList(Of Field) = schema.Lookup(_guid).ListFields
 Dim fld As Field
 For Each fld In fields
 s += vbCrLf + "Field name: " + fld.FieldName
 Next
 TaskDialog.Show("Field details", s)
 </VB.NET>

Now let’s check if the Entity’s we assigned to the selected wall can be accessed all right.

<VB.NET>
 ' Extract the value for the field we created

 Dim wallSchemaEnt As Entity = wall.GetEntity(schema.Lookup(_guid))

 Dim wallSocketPos As XYZ = wallSchemaEnt.Get(Of XYZ)(_
 schema.Lookup(_guid).GetField("SocketLocation"), _
 DisplayUnitType.DUT_METERS)

 s = "SocketLocation: " + PointToString(wallSocketPos)

 Dim wallSocketNumber As String = wallSchemaEnt.Get(Of String)(_
 schema.Lookup(_guid).GetField("SocketNumber"))

 s += vbCrLf + "SocketNumber: " + wallSocketNumber

 TaskDialog.Show("Field Values", s)
 </VB.NET>

Where PointToString() is a simple helper function to convert a point as a string for display. You may reuse the one you have written in Lab2, e.g.:

<VB.NET>

 '' Helper Function: returns XYZ in a string form.
 ''

 Public Shared Function PointToString(ByVal pt As XYZ) As String

 If pt Is Nothing Then
 Return ""
 End If

 Return "(" + pt.X.ToString("F2") + ", " + pt.Y.ToString("F2") + _
 ", " + pt.Z.ToString("F2") + ")"

 End Function
</VB.NET>

4. Summary
In this lab, we learned how to define and attach a custom data to a Revit element, using Extensible Storage mechanism in the API. We have learned how to:
· Create and access extensible storage entities of Revit elements.

Autodesk Developer Network

