
LRUG London Revit User Group http://www.lrug.org.uk/ 

Revit API – An Introduction 

Some simple code examples using C# and… 

A few projects using the API to generate geometry 

Ritchie Jackson 

 

16th March 2011 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Presentation Scope 
Target Audience 

 Novice programmers with some C# experience, familiar with Revit but not the API 
 

Interface 

 Macro generation using Visual Studio Tools for Applications (VSTA) & C# -> 

 Code can be edited, built and run ‘live’ in a Revit session 
 

Focus 

 Underlying geometry fundamental to creation of 3D objects -> 

 Selection of component type at user’s discretion 
 

Examples 

 Elementary geometry with workflow 

 Comparison of two component types highlighting commonality of code 

 More complex project applications showing workflow 
 

Code Appendix 

 Module and Macro setup with full code for first example 

 Additional code in accompanying file 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Why use the API for Form Generation? 
Firstly :- 

 Strategy dependent on object and project specifics 

 

Rough guide : If the object has :- 

 Features unique to one project? -> do it manually – in-place or system family 

 Dimensional variation  -> do it manually – family parameters 

 Repeated form with variation -> do it manually – nested families and / or 

       adaptive components 

 Complex formulae & conditionals -> grey area        – manual might work 

 Complex object dependencies -> using the API begins to make sense 

 

But :- 

 When starting to use the API, the learning process dictates that the above rules 

will have to be ignored – walk then run 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Simple API Macro Examples with C# Code 

Basic_01_Line : Single line Basic_02_Extrusion : Simple box Basic_03_Extrusion : Box+cutout 

 About as simple as it gets 

 

 Historical Note :- 

     1980’s migration to CAD – 

     Ubiquitous outcry –  

‘I can do it faster on the drawing board’ 

 

 Well, you’ve got to start somewhere… 

 Add three more lines in a closed 

loop and make a solid 

 A closed loop within a closed loop 

Basic_04_BoardWalk : Iteration 

 Start to leverage the power of the API 

 Control the length and height offset of 

individual boxes using a spline profile’s 

y-Axis offset and duplicate the boxes 

along the spline’s x-Axis length 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Workflow Comparison : Generic Model vs. System Floor 

// Floor Slab Perimeter Points 

XYZ pnt01 

XYZ pnt02 

XYZ pnt03 

XYZ pnt04 

XYZ pnt05 

// Perimeter Geometry 

Line line01 <- (pnt01 -> pnt02) 

Line line02 <- (pnt02 -> pnt03) 

Line line03 <- (pnt04 -> pnt01) 

Arc arc01 <- (pnt03, pnt04, pnt05) 

// Place Perimeter elements in an Array 

CurveArray floorPerimeter <- 

 (line01, line02, arc01, line03) 

// Floor Slab Cut-out Points 

XYZ pnt06 

XYZ pnt07 

XYZ pnt08 

// Cut-out Geometry 

Line line04 <- (pnt06 -> pnt07) 

Arc arc02 <- (pnt06, pnt07, pnt08) 

// Place Cut-out elements in an Array 

CurveArray floorCutout <- 

 (line04, arc02) 

Pseudo-Code Workflow 

// Array of Arrays for the Profiles 

CurveArrArray extrudeProfile 

      // Extrusion Plane 

      Plane plane <- floorPerimeter 

      SketchPlane <- plane 

      // Create the Floor 

Extrusion floor <- 

(extrudeProfile, planeSK, thickness) 

// Create the Floor 

Floor floor1 <- (floorPerimeter) 

// Constraining Levels 

Level levelLo 

Level levelHi 

// Create the Cut-out 

Opening floorCut <- 

  (levelLo, levelHi, 

   floorCutout) 

Generic Model Code System Floor Code Common Code 

Learning :- 
In many cases it’s easier to use a 

Generic Model 

Final Document :- 
Imperative to have the correct type – 

If it’s a floor then use System Floor 
Extrusion Floor 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Project API Examples 

Amphitheatre 
 API Scope:- 

• Set out only 

Truss 
 API Scope:- 

• All elements 

Roller-Coaster Reception 
 API Scope:- 

• All elements 

• Materials 

High Rise 
 API Scope:- 

• Façade Set out 

• Façade Panels 

• Façade Materials 

• Floor plates 

• Beams 

• Beam Materials 

 Generic Model Family used for all API-

constructed elements in order to 

simplify learning process - 

 Regardless of component type, 

underlying geometry (points, lines, 

curves, …) is similar for all objects 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Macro : Basic_01_Line : A single line 

 7 lines of code – 

not very promising 

// Convert Revit’s internal ‘Imperial Feet’ to Millimeters 

double ftMM <- 1 / 304.8 

 

// Define two points on the Line in millimeters 

XYZ point01 * ftMM 

XYZ point02 * ftMM 

 

// Create the underlying Line geometry 

Line line01 <- (point01 -> point02) 

 

// Define the Plane for the Line placement 

// using the X-Axis, Y-Axis, Origin 

Plane plane <- XYZ.BasisX, XYZ.BasisY, point01 

 

// Create a Sketch Plane from this Plane 

// in order to display the Line 

SketchPlane planeSK <- plane 

 

// Display the Line on the Sketch Plane 

ModelLine line01M <- line01, planeSK 

 

Pseudo-Code Workflow : Full Code in Appendix 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Macro : Basic_02_Extrusion : A simple box 

// Convert Revit’s internal ‘Imperial Feet’ to Millimeters 

double ftMM <- 1 / 304.8 

 

// Define four points for the Profile 

XYZ point01 * ftMM 

XYZ point02 * ftMM 

XYZ point03 * ftMM 

XYZ point04 * ftMM 

 

// Create the underlying Line geometry 

Line line01 <- (point01 -> point02) 

Line line02 <- (point02 -> point03) 

Line line03 <- (point03 -> point04) 

Line line04 <- (point04 -> point01) 

 

// Create an Array to hold the closed-loop of Profile Edges 

CurveArray curveAr1 

 

// Place the single closed-loop of Profile Edges in the Array 

line01 -> curveAr1 

line02 -> curveAr1 

line03 -> curveAr1 

line04 -> curveAr1 

 

// Create an Array of Arrays - allows for multiple profiles 

CurveArrArray curveArAr 

// Place the closed-loop in the Array of Arrays 

curveAr1 -> curveArAr 

 

// Define the Plane for the Extrusion placement 

// using the X-Axis, Y-Axis, Origin 

Plane plane <- XYZ.BasisX, XYZ.BasisY, point01 

 

// Create a Sketch Plane from this Plane 

// in order to display the Line 

SketchPlane planeSK <- plane 

 

// Create the Extrusion 

Extrusion extrude <- curveArAr, planeSK, thickness 

 

 19 lines of code – 

slight improvement 

Pseudo-Code Workflow : Full Code in accompanying file 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Macro : Basic_03_Extrusion : A box with cutout 

// Add the following to the previous example 

 

// Define four more points for the second profile 

XYZ point05 * ftMM 

XYZ point06 * ftMM 

XYZ point07 * ftMM 

XYZ point08 * ftMM 

 

// Create the underlying Line geometry 

Line line05 <- (point05 -> point06) 

Line line06 <- (point06 -> point07) 

Line line07 <- (point07 -> point08) 

Line line08 <- (point08 -> point05) 

 

// Create an Array for the 2nd closed-loop of Profile Edges 

CurveArray curveAr2 

 

// Place the 2nd closed-loop of Profile Edges in the 2nd Array 

line05 -> curveAr2 

line06 -> curveAr2 

line07 -> curveAr2 

line08 -> curveAr2 

 

// Place all the closed-loops in the Array of Arrays 

curveAr2 -> curveArAr 

 

// Re-use the Extrusion command – 

// the Array of Arrays now holds both inner and outer Profiles 

Extrusion extrude <- curveArAr, planeSK, thickness 

 

 33 lines of code – 

getting there 

Pseudo-Code Workflow : Full Code in accompanying file 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Macro : Basic_04_BoardWalk : Iteration 

Hermite spline interpolates 

5 control points 

y-Axis offset 

intersects spline 

// Define the Interpolation Points for a Spline 

// controlling one edge of the Boardwalk 

XYZ pntS01 * ftMM    XYZ pntS02 * ftMM    XYZ pntS03 * ftMM 

XYZ pntS04 * ftMM    XYZ pntS05 * ftMM 

 

// Define a List to hold the Spline Points 

IList<XYZ> splinePnts = new List<XYZ>(); 

// Add the Points to this List 

pntS01 -> splinePnts    pntS02 -> splinePnts    pntS03 -> splinePnts 

pntS04 -> splinePnts    pntS05 -> splinePnts 

// Create the Spline 

HermiteSpline spline1 <- (spline1Pnts) 

 

// Define the Plank spacing 

double plankSpace <- plankWidth + gap * ftMM 

// Determine the number of required Planks -> 

// Overall length is the x-Value of the last point on the Spline 

int numberOfPlanks <- pntS05.X / plankSpace 

 

// Create the BoardWalk 

for (int i = 0; i < numberOfPlanks; i++) 

{ 

    // x-Offset for the bottom-left corner of the current Plank 

    double start <- i * plankSpace 

    // Project a line parallel to the y-Axis through this point 

    // to find the intersection with the Spline and hence the length 

    double leftSideLength 

    // Do the same for the bottom-right plank corner 

    double rightSideLength 

    // Send this information to the ‘drawPlank’ function 

    drawPlank(start, leftSideLength, rightSideLength) 

 

} 

// Encapsulate the amended code for ‘box-with-cutout’ in a function  

// but allow for size and placement variations 

drawPlank(start, leftSideLength, rightSideLength) 

{ 

    // 'length1' -> Box left side, 'length2' -> Box right side 

    // 'edgeOffSet' -> cut-out offset, 'xPosition' -> x-Axis offset 

} 

Pseudo-Code Workflow : Full Code in accompanying file 

 74 lines of code – 

API just beginning 

to prove useful 

z-Axis offset 

proportional to y-

Axis offset 

Stringing the boxes together… 

elevation 

plan x-Value of spline 

end-point determines 

length of boardwalk 



LRUG London Revit User Group http://www.lrug.org.uk/ 

High-Rise : API Scope 
Input Parameters :- 

• Control floor profiles 

• Control floor level location 

• Beam springing points 

Podium :- 

API used for glazing – 

 

all other elements generated 

conventionally via UI 

Tower :- 

API used for glazing, floor 

plates and beams. 

 

API assigned finish to façade 

panels – randomly chosen 

from 12 materials (6 colours x 

2 reflectance values) 

Apex :- 

API used for glazing – 

 

Code from Tower adapted 

Core :- 

Fixed, with static springing 

points for floor plate 

support structure 

API adapts beam end-

points to slab profile 

• Number of Floors  

• Floor-to-Floor height 

• Transom heights 



LRUG London Revit User Group http://www.lrug.org.uk/ 

High-Rise : Workflow 

Type-01 Type-02 

Type-03 Type-04 

Lvl 

04 

32 

Lvl 

Lvl 

06 

09 

12 

24 

30 

20 

28 

Lvl 

06 - 02 

09 - 02 

12 - 02 

20 - 03 

24 - 02 

28 - 03 
30 - 02 

32 - 04 
Lvl - Type 

Assign Control Floor 

Plates to Levels 

Generate Spline 

Mullion Controls 

04 - 01 

Generate intermediate 

Floor and Transom set outs 

Floor Plates Beams Façade 

24 Control Points 

and 8 Splines 

per Floor 

24 Mullion Splines 

interpolating 

Floor Plate 

Control Points 

Transoms at 

+900 and + 2700 

from Floor Level 

start 

Control 

Floor 

Plates 

core 

core core 

core 

1 

2 3 4 

5 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Amphitheatre 

Input Parameters :- 

• Required number of Seats 

• Seat spacing minimum 

• Row spacing 

• Sweep angle in plan 

• Rake angle 

• Number of Aisles – 

• side Aisles included 

• Aisle Width 

• Start Radius – Front Row 

Only the set outs were generated in 

the API – probably not efficient to 

code the complete structure – faster 

to flesh it out manually 

plan 

Seats   : 400 

Sweep :120° 

Aisles  : 6 

Seats   : 350 

Sweep :75° 

Aisles  : 4 

plan 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Truss 

Input Parameters :- 

• Span 

• Number of Bracing Bays 

• Component Radii 

• Top Chord offsets at Apex 

• Top Chord Angles 

• Depth to lower Chord 

This could easily be done without the API – but 

adding complexity can often cause conventional 

methods to ‘break’ 

front side 

plan 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Roller-Coaster Reception 
Input Parameters :- 

• Spline interpolation points 

• Number of Sectors 

• Component Radii 

• Frame Base Offset from Spline 

• Frame Apex Offset from Spline 

• Rafter Start Sector 

• Rafter End Sector 

• Rafter Length 

Set out Armature :- 

• Single Hermite Spline interpolating 

control points and created in Revit 

conceptual mass or external package 

front side 

plan 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Roller-Coaster Reception : Workflow 

tangent vectors form 

plane normals … 
for 

element 

offsets 

determine the tangent 

vectors along the 

spline at … ..regular 

intervals 

sketch the spline 

export the 

control points 

1 

2 

4 3 5 

set out 

rafters 

dimension 

components 

for fabrication 

x : -474, 

y :   -85, 

z : 2490 

x : -246, 

y : -278, 

z : 2720 

x :    24, 

y : -477, 

z : 2890 

x :  868, 

y : -436, 

z : 1170 
Ø100 pipe 

x : 0, 

y : 0, 

z : 0  

Component rational 

• Planar set outs for all elements in 
order to facilitate fabrication -> 

• All curved elements are true arcs 

• Number of sectors chosen to ensure 
visual continuity at arc joints -> 

adjacent arcs not exactly co-tangent 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Appendix : Module and Macro : Quick Start 
 Download code from LRUG website  

 Place ‘LRUG_01_Basic’ folder in 

 C:\Program Files\Autodesk\Revit Architecture 2011\Program\VstaMacros\AppHookup\ 

 Open a new Generic Model family document 

 Open the Macro Manager from the ‘Manage’ tab 
 Select ‘Application’ tab 

 ‘Edit’   : LRUG_01_Basic 

 ‘Build’ : LRUG_01_Basic 

 ‘Run’  : Basic_01_Line 

         Basic_02_Extrusion 

         Basic_03_Extrusion 

         Basic_04_Boardwalk 

 Play with the code :- 

 ‘Edit’ – change some of the variables 
 ‘Build’ again 

 ‘Run’ again 

 NOTE 

 Code structure is kept to the bare minimum for simplicity, so -> 

 1 : Little or no error-checking provided 

 2 : Object-oriented technology is ignored -> users should investigate Classes and encapsulation 

 3 : Examples highlight re-usability of code -> cut and paste to bootstrap projects 

(‘Starting from Scratch’ on following pages) 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Appendix : Module and Macro in C# - Workflow 

 From the ‘Manage’ tab select ‘Macro 

Manager’ under ‘Macros’ 

 Select the ‘Application’ tab so that 

the macros will be visible in newly 

created documents and … 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Appendix : Creating the Module in C# 

 Give the Module a logical name and 

description and check the C# radio 

button 

 ‘Create’ a new ‘Module’ in the 

Macro Manager 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Appendix : Creating the first Macro in C# 

 Create a Macro template within 

this Module 
 Give the Macro a logical name 

and description 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Appendix : Creating the Macro in C# 

 The code window opens with its ‘namespace’ given the Module name :- 

 A method with the same name as the Macro has been automatically created 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Appendix : Creating the Macro in C# 

 At the top under 

using System; 

add :- 

using Autodesk.Revit.DB; 

using Autodesk.Revit.UI; 

to gain access to the Revit functions and to avoid 

having to prefix each function call with the same 

  User code will be inserted in the 

method corresponding to the Macro 

name 

 

public void Basic_01_Line() 

{ 

 // Your code goes here... 

} 

 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Appendix : Creating the Macro in C# 

 The summary below highlights the basic work-flow – the full definition follows 

and is the code to be placed in the Macro  

 Assume we will be working in millimetres.  

 Create a point :- 

 XYZ point01 = new XYZ(); 

 No values were provided so the systems assumes it’s at the origin - (0.0, 

0.0, 0.0) 

 Create a second point – first attempt :- 

   XYZ point02 = new XYZ(0.0, 2100.0, 0.0);  

 There is a problem – Revit’s internal unit of length is Imperial Feet – 

       So provide a conversion variable in order to work in Millimetres 

   double ftMM = 1 / 304.8; 

 and re-write the point definition, multiplying by the conversion factor :- 

       XYZ point02 = new XYZ(0.0, 2100.0, 0.0) * ftMM; 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Appendix : Creating the Macro in C# 

 Create a Line using the given points :- 

   Line line01 = doc.Application.Create.NewLine(point01, point02, true); 

 The ‘true’ parameter indicates the Line is ‘bound’ and terminates at the points. 

 Establish a Plane for the Line to be drawn on :- 

   Plane plane = doc.Application.Create.NewPlane(XYZ.BasisX, XYZ.BasisY, point01); 

 The X-Axis, Y-Axis and Origin Point are given.  

 Form a Sketch Plane from the Plane :- 

   SketchPlane planeSK = doc.FamilyCreate.NewSketchPlane(plane); 

 Finally, display the Line :- 

   ModelLine line01F = doc.FamilyCreate.NewModelCurve(line01, planeSF) as ModelLine; 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Appendix : Creating the Macro in C# 
 This is the full definition – 

      comments, prefixed with //, are not required but aid in development :- 
  

public void Basic_01_Line() 

{ 

    // Begin a series of instructions to Revit 

    Transaction trans1 = new Transaction(ActiveUIDocument.Document, "Line"); 

    trans1.Start(); 

  

    // Define the document into which the geometry will be placed 

    Document doc = ActiveUIDocument.Document; 

  

    // Revit uses Imperial Feet as its internal definition for length - 

    // So provide a conversion variable in order to work in Millimetres:- 

    double ftMM = 1 / 304.8; 

  

    // Define two points on the Line - multiply by the conversion variable 

    XYZ point01 = new XYZ(); // Defaults to (0.0, 0.0, 0.0) if no values are provided  

    XYZ point02 = new XYZ(3000.0, 2400.0, 0.0) * ftMM; 

  

    // Create the Line geometry - 'true' indicates it terminates at the setout points 

    Line line01 = doc.Application.Create.NewLine(point01, point02, true); 

  

    // Define the Plane for the Line placement - X-Axis, Y-Axis, Origin 

    Plane plane = doc.Application.Create.NewPlane(XYZ.BasisX, XYZ.BasisY, point01); 

  

    // Create a Sketch Plane from this Plane in order to display the Line 

    SketchPlane planeSF = doc.FamilyCreate.NewSketchPlane(plane); 

    

    // Display the Line 

    ModelLine line01F = doc.FamilyCreate.NewModelCurve(line01, planeSF) as ModelLine; 

     

    // End the series of instructions 

    trans1.Commit(); 

} 



LRUG London Revit User Group http://www.lrug.org.uk/ 

Appendix : Creating the Macro in C# 

 Build it : before the Macro can be ‘Run’ it needs to be ‘Built’ in the Editor 

 Run it : finally, the code produces some output in the Revit document 

 Hopefully, this message appears at bottom-left 


