Revit APl — An Introduction

Some simple code examples using C# and...

A few projects using the API to generate geometry

Ritchie Jackson

16t March 2011

Presentation Scope

Target Audience
Novice programmers with some C# experience, familiar with Revit but not the API

Interface
Macro generation using Visual Studio Tools for Applications (VSTA) & C# ->

Code can be edited, built and run ‘live’ in a Revit session

Focus
Underlying geometry fundamental to creation of 3D objects —>

Selection of component type at user’s discretion

Examples
Elementary geometry with workflow
Comparison of two component types highlighting commonality of code
More complex project applications showing workflow

Code Appendix
Module and Macro setup with full code for first example
Additional code in accompanying file

Why use the API for Form Generation?

Firstly : -
Strategy dependent on object and project specifics

Rough guide : If the object has :-
Features unique to one project? -> do it manually — in-place or system family

Dimensional variation -> do it manually — family parameters
Repeated form with variation —> do it manually — nested families and / or
adaptive components
Complex formulae & conditionals -> grey area — manual might work
Complex object dependencies —> using the API begins to make sense
But :-

When starting to use the API, the learning process dictates that the above rules
will have to be ignored — walk then run

Simple APl Macro Examples with C# Code

Basic_01_Line : Single line Basic_02_Extrusion : Simple box Basic_03_Extrusion : Box+cutout

“ Add three more lines in a closed “ Aclosed loop within a closed loop

“ About as simple as it gets
loop and make a solid

= Historical Note :-
1980’s migration to CAD —

Ubiquitous outcry —
‘| can do it faster on the drawing board’

= Well, you've got to start somewhere...

Basic 04 BoardWalk : Iteration

© Start to leverage the power of the API

= Control the length and height offset of
individual boxes using a spline profile’s
y-Axis offset and duplicate the boxes
along the spline’s x-Axis length

Workflow Comparison : Generic Model vs. System Floor

Pseudo-Code Workflow

// Floor Slab Perimeter Points
XYZ pnt0l

i XYZ pnt02

Generic Model Code xz pneos Common Code System Floor Code

XYZ pnt05
// Perimeter Geometry
Line 1line0l <- (pnt01l -> pnt02)
Line 1ine02 <- (pnt02 -> pnt03)
Line 1ine03 <- (pnt04 -> pnt01)
Arc arc0l <- (pnt03, pnt04, pnt05)

// Array of Arrays for the Profiles // Place Perimeter elements in an Array // Create the Floor
CurveArrArray extrudeProfile < — — — = CurveArray floorPerimeter <- == == = = = = = = = = >Floor floorl <- (floorPerimeter)
I == — (line01l, 1ine02, arcO0l, 1ine03) I
| I // Floor Slab Cut-out Points I
XY7 pnt06
I I %vz pnto7 |
| | xvz pntos [
| // Extrusion Plane | // Cut-out Geometry // Constraining Levels
I Plane plane <- floorPerimeter | Line 1ine04 <- (pnt06 -> pnt07) Level levello I
SketchPlane <- plane I Arc arc02 <- (pnt06, pnt07, pnt08) Level levelHi I
// Create the Floor // Place Cut-out elements in an Array // Create the Cut-out
Extrusion floor <- I == CurveArray floorCutout <= == == == == == == == == - =» Opening floorCut <- I
(extrudeProfile, planeSK, thickness) (line04, arc02) (levelLo, levelHi, I
I floorCutout) I
I I I
I I I
I I I

Learning :-
In many cases it's easier to use a
Generic Model

Final Document :-
Imperative to have the correct type —

el If it's a floor then use System Floor

Project APl Examples

High Rise
= Generic Model Family used for all API- * API Scope:-
constructed elements in order to - Facade Set out
simplify learning process - - Facade Panels
* Regardless of component type, - Facade Materials
underlying geometry (points, lines, * Floor plates
curves, ...) is similar for all objects - Beams

- Beam Materials

Roller-Coaster Reception

“ API Scope:-

- All elements

- Materials
Truss Amphitheatre
“ API Scope:- “ API Scope:-

- All elements « Set out only

Macro : Basic 01 Line : A single line

Pseudo-Code Workflow : Full Code in Appendix

| // Convert Revit’s internal ‘Imperial Feet’ to Millimeters

| = 7 lines of code — double ftMM <- 1 / 304.8
T nOt Very promISIng // Define two points on the Line in millimeters
XY7Z point0l * ftMM
XY7Z point02 * ftMM

// Create the underlying Line geometry
Line 1line0l <- (point0l -> point02)

// Define the Plane for the Line placement
// using the X-Axis, Y-Axis, Origin
Plane plane <- XYZ.BasisX, XYZ.BasisY, pointO1l

2100

// Create a Sketch Plane from this Plane
// in order to display the Line
SketchPlane planeSK <- plane

// Display the Line on the Sketch Plane
- 4+ - - — ModelLine 1ineO1M <- 1ine0l, planeSK

Macro : Basic 02 Extrusion : A simple box

| Pseudo-Code Workflow : Full Code in accompanying file

| 300 // Convert Revit’s internal ‘Imperial Feet’ to Millimeters

“ 19 lines of code — double fEMM <- 1 / 304.8
slight improvement

// Define four points for the Profile
XYZ point0l * ftMM

XYZ point02 * ftMM
XYZ point03 * ftMM
XYZ point04 * ftMM

// Create the underlying Line geometry
Line 1line0l <- (point0l -> point02)
Line 1line02 <- (point02 -> point03)
Line 1ine03 <- (point03 -> point04)
Line 1ine04 <- (point04 -> point01l)

2100

// Create an Array to hold the closed-loop of Profile Edges
CurveArray curveArl

// Place the single closed-loop of Profile Edges in the Array
- — — _ = — = 1line0l -> curveArl
| Ref. Level 1line02 -> curveArl
— 0 1ine03 -> curveArl
i line04 -> curveArl

// Create an Array of Arrays - allows for multiple profiles
CurveArrArray CUrveArAr

// Place the closed-loop in the Array of Arrays

curveArl -> curveArAr

// Define the Plane for the Extrusion placement
// using the X-Axis, Y-Axis, Origin
Plane plane <- XYZ.BasisX, XYZ.BasisY, pointOl

// Create a Sketch Plane from this Plane
// in order to display the Line
SketchPlane planeSK <- plane

// Create the Extrusion
Extrusion extrude <- curveArAr, planeSK, thickness

Macro : Basic_ 03 _Extrusion : A box with cutout

| Pseudo-Code Workflow : Full Code in accompanying file

| 300 // Add the following to the previous example
b |

| 33 lines of code -
getting there

// Define four more points for the second profile
XY7Z point05 * ftMM
XY7Z point06 * ftMM
XY7Z point07 * ftMM
XY7Z point08 * ftMM

// Create the underlying Line geometry
Line 1ine05 <- (point05 -> point06)
Line 1line06 <- (point06 -> point07

o ()
= Line 1ine07 <- (point07 -> point08)
Line 1ine08 <- (point08 -> point05)
o // Create an Array for the 2nd closed-loop of Profile Edges
= CurveArray curveAr?2
// Place the 2nd closed-loop of Profile Edges in the 2nd Array
1ine05 -> curveAr?2
4 N 1ine06 -> curveAr?2
25 1line07 -> curveAr?

| 1ine08 -> curveAr?2

| Ref. Level
— 0

| // Place all the closed-loops in the Array of Arrays
curveAr2 -> curveArAr

// Re-use the Extrusion command -
// the Array of Arrays now holds both inner and outer Profiles
Extrusion extrude <- curveArAr, planeSK, thickness

Macro : Basic 04 BoardWalk : Iteration

Stringing the boxes together...

y-Axis offset .
intersects spline . 4 |II’]€S Of COde —

1O API just beginning
to prove useful

| il

"plan

=" z-Axis offset ~=_
proportional toy- ~ —_.
Axis offset e =

elevation

I

x-Value of spline
end-point determines
length of boardwalk

=

Pseudo-Code Workflow : Full Code in accompanying file

// Define the Interpolation Points for a Spline
// controlling one edge of the Boardwalk
XY7Z pntS01 * ftMM XY7 pntS02 * ftMM
XY7Z pntS04 * ftMM XY7Z pntS05 * ftMM

XYZ pntS03 * ftMM

// Define a List to hold the Spline Points
IList<XYZ> splinePnts = new List<XYZ>();

// Add the Points to this List

pntS01 -> splinePnts pntS02 -> splinePnts
pntS04 -> splinePnts pntS05 -> splinePnts
// Create the Spline

HermiteSpline splinel <- (splinelPnts)

pntS03 -> splinePnts

// Define the Plank spacing

double plankSpace <- plankWidth + gap * ftMM

// Determine the number of required Planks ->

// Overall length is the x-Value of the last point on the Spline
int numberOfPlanks <- pntS05.X / plankSpace

// Create the BoardWalk

for (int i = 0; i1 < numberOfPlanks; i++)

{
// x-0ffset for the bottom-left corner of the current Plank
double start <- i * plankSpace
// Project a line parallel to the y-Axis through this point
// to find the intersection with the Spline and hence the length
double leftSidelLength
// Do the same for the bottom-right plank corner
double rightSideLength
// Send this information to the ‘drawPlank’ function
drawPlank (start, leftSidelLength, rightSidelLength)

}

// Encapsulate the amended code for ‘box-with-cutout’ in a function
// but allow for size and placement variations
drawPlank (start, leftSidelLength, rightSidelLength)
{
// '"lengthl' -> Box left side, 'length2' -> Box right side
// 'edgeOffSet' -> cut-out offset, 'xPosition' -> x-Axis offset

High-Rise : APl Scope

Input Parameters :-

« Control floor profiles * Number of Floors

- Control floor level location « Floor-to-Floor height
+ Beam springing points - Transom heights

Apex :-

API used for glazing — API adapts beam end-

points to slab profile---

Code from Tower adapted

Tower :-
API used for glazing, floor
plates and beams.

API assigned finish to facade
panels — randomly chosen
from 12 materials (6 colours x
2 reflectance values)

Ceeeee
] L S L L

Podium :-
API used for glazing —

Fixed, with static springing
points for floor plate
support structure

all other elements generated
conventionally via Ul

High-Rise : Workflow

Assign Control Floor

Plates to Levels

2 Lvl - Type
32-04

30 - 02
28 - 03

24 - 02
20 - 03

12 - 02
09 - 02

06 - 02
04 -01

71y

and 8 Splines
O per Floor

Generate Spline
Mullion Controls

i

e | ()

/ﬂ{ 5 24 Mullion Splines
41 interpolating
Floor Plate

Control Points

H—

PN
| f‘ '(;‘ INB

Floor Plates

Generate intermediate
Floor and Transom set outs

A

Transoms at
+900 and + 2700
from Floor Level

Amphitheatre

=
N~ <
o
wn
)
=
N <

Sweep :120°
Aisles : 6

Input Parameters :-

Required number of Seats

©
5
S =
=) &)
C
E &8 1 E&
S 2 90
E £ 23
D0
SEoo sy
O
S 22T
20 g o ¥
Sse O
—) .
S = O x £
©Q O =2® >
neKEmnee =2

Aisle Width

Start Radius — Front Row

Only the set outs were generated in
the API — probably not efficient to

code the complete structure — faster

to flesh it out manually

Input Parameters :-
Span
Number of Bracing Bays
Component Radi
Top Chord offsets at Apex
Top Chord Angles
Depth to lower Chord

plan

This could easily be done without the APl — but
adding complexity can often cause conventional
methods to ‘break’

Roller-Coaster Reception

Input Parameters :-

- Spline interpolation points

> Number of Sectors

- Component Radii

- Frame Base Offset from Spline
+ Frame Apex Offset from Spline
- Rafter Start Sector

- Rafter End Sector

- Rafter Length

plan

Set out Armature :-

- Single Hermite Spline interpolating
control points and created in Revit
conceptual mass or external package

Roller-Coaster Reception : Workflow

sketch the spline Component rational

« Planar set outs for all elements in
order to facilitate fabrication ->

- All curved elements are true arcs

* Number of sectors chosen to ensure
visual continuity at arc joints —>
adjacent arcs not exactly co-tangent

determine the tangent
vectors along the -
spline at ... _,-..regular

2 >* intervals -
/ ”X ,' o
X : -474, g
y: -85, | o .
z : 2490 | : e
| | . e
i ! : X 868,7
- lAi ! ; y :-436,
tangent vectors form - - — - & 2100, pipe i | 21170
plane normals~ 4 ’ | :
\1/(\\» for- | -
»}\\ {\{‘ element
. \)«- offsets

Appendix : Module and Macro - ?tuick Start

arting from Scratch’ on following pages
= Download code from LRUG website J g pages)

= Place '‘LRUG_01 Basic’ folder in
= C:\Program Files\Autodesk\Revit Architecture 2011\Program\VstaMacros\AppHookup\

= Open a new Generic Model family document .
= Open the Macro Manager from the ‘Manage’ tab

Macro Manager

= Select ‘Application’ tab

= ‘Edit’ :LRUG_01 Basic
= ‘Build’: LRUG_01_Basic
* ‘Run’ : Basic_01_Line = IR

o Application | § Family! |

Macros in this application are enabled,

.. | Description

Basic_02_Extrusion % LRUG_01_Basic - Autodesk Revit Architecture 2011
BaSiC 03 EXtrUSion File Edit ‘“iew Refactor Projeck |Eh.||||:| Debug DCata Tools Window Help
o A - g & B 8| EY Buld RUG_01_Basic a4 %= (=
BaSIC_O4_Boardwal k g ThisApplication.cs Batch Build. ..
- Play W|th the COde - E #$LRUG_01_Basic, ThisApplication Configuration Manager... w || 59Mod.
= 'Edit’' — change some of the variables Macro Manager

= ‘Build’ again 5 Applcation | Famiy1 |
Macraos in this application are enabled,

U 2 T
|
un agaln Macraos Langu... | Descripkion |

12 LRUG_01_Basic Ch
[B azic_01_Line C

= Code structure is kept to the bare minimum for simplicity, so —>

= 1. Little or no error-checking provided
= 2 :0Object-oriented technology is ignored -> users should investigate Classes and encapsulation

= 3: Examples highlight re-usability of code -> cut and paste to bootstrap projects

Appendix : Module and Macro in C# - Workflow

= From the ‘Manage’ tab select ‘Macro e —
Manager’ under ‘Macros’ @fﬁ

Macro Macro
Manager Security

‘ Macros

= Select the ‘Application’ tab so that
the macros will be visible in newly
created documents and ... o Application | G Family1

Macros in this application are enabled,

Macros Language Description

en) LRUG_01_Basic

Appendix : Creating the Module in C#

‘Create’ a new ‘Module’ in the
Macro Manager

Fun

Edit

akep Inkto
i_reate

[Module

Macro

Give the Module a logical name and
description and check the C# radio
button

Create a Hew Module

Module nare: | LRUG 01 Basic

Language: (JWB.MET (o) C#

Description: London Rewit User Group -

Inkroduction ko the API

‘ K. J I Cancel l

Appendix : Creating the first Macro in C#

= Create a Macro template within

_ = Give the Macro a logical name
this Module

and description

Create a Hew Macro

Macro name: | Basic_01_Line

Fun

Macro in: | LRUG_01_Basic (C#)

| Ed
Descriplion: | ~.czte and display a single Line in a

Step Inko Revit Family document|

_reake

|_ Module J

| Macro |

L Ok, J [Cancel l

Appendix : Creating the Macro in C#

= The code window opens with its ‘namespace’ given the Module name :-

using 3ystem;

|
|
v

] namespace LROG 01 Basic
{
[Autodesk.Revit.Attributes., Transaction(Autodesk. Revit. . Attributes., TransactionMode . Manual)]
[Autodesk.Revit.Attributes.,. Fegeneration{dutodesk. Revit. Attributes.,. Fegenerationtption. Manual)]
[Autodezsk.Revit . VaTL, LddInId("Saclsdel-a7aa-4201-9926—qecolafsdsdq ™)]
= public partial class Thishipplication
{
= priwvate wold Module Startup (ckhject sender, Eventlirgs g)
{
B ¥
= private wold Module Shutdown(ockhject sender, Eventlirgs g)
{
B ¥
| FSTL generated cndﬂ
= pubrlic wolid Basic 01 Line ()
{ A
|
n } |
|
- } I
|

= A method with the same name as the Macro has been automatically created

Appendix : Creating the Macro in C#

= At the top under

using System;

add :-

using Autodesk.Revit.DB;

using Autodesk.Revit.UI;

to gain access to the Revit functions and to avoid
having to prefix each function call with the same

= User code will be inserted in the
method corresponding to the Macro
name

public voild Basic 01 Line()

{
// Your code goes here...

}

Appendix : Creating the Macro in C#

= The summary below highlights the basic work-flow — the full definition follows
and is the code to be placed in the Macro

= Assume we will be working in millimetres.
= Create a point :-

XY7 point0l = new XYZ();

= No values were provided so the systems assumes it's at the origin- (0.0,
0.0, 0.0)

= Create a second point — first attempt :-
XY7 point02 = new XYz (0.0, 2100.0, 0.0);
= There is a problem — Revit’s internal unit of length is Imperial Feet —
So provide a conversion variable in order to work in Millimetres
double ftMM = 1 / 304.8;
= and re-write the point definition, multiplying by the conversion factor :-

XY7 point02 = new XYz (0.0, 2100.0, 0.0) * ftMM;

Appendix : Creating the Macro in C#

= Create a Line using the given points :-
Line line0l = doc.Application.Create.NewLine (point0l, point02, true);
= The ‘true’ parameter indicates the Line is ‘bound’ and terminates at the points.
= Establish a Plane for the Line to be drawn on :-
Plane plane = doc.Application.Create.NewPlane (XY%.BasisX, XYZ.BasisY, pointO01l);
= The X-Axis, Y-Axis and Origin Point are given.
= Form a Sketch Plane from the Plane :-
SketchPlane planeSK = doc.FamilyCreate.NewSketchPlane (plane);
= Finally, display the Line :-

ModellLine 1ine0OlF = doc.FamilyCreate.NewModelCurve (1line0Ol, planeSF) as ModellLine;

Appendix : Creating the Macro in C#

= This is the full definition —
comments, prefixed with //, are not required but aid in development :-

public void Basic 01 Line()

{
// Begin a series of instructions to Revit
Transaction transl = new Transaction (ActiveUIDocument.Document, "Line");
transl.Start (),

// Define the document into which the geometry will be placed
Document doc = ActiveUIDocument.Document;

// Revit uses Imperial Feet as its internal definition for length -
// So provide a conversion variable in order to work in Millimetres:-
double ftMM = 1 / 304.8;

// Define two points on the Line - multiply by the conversion variable
XY7Z point0l = new XYZ(); // Defaults to (0.0, 0.0, 0.0) if no values are provided
XY7 point02 = new XYZ(3000.0, 2400.0, 0.0) * ftMM;

// Create the Line geometry - 'true' indicates it terminates at the setout points
Line line0l = doc.Application.Create.NewlLine (point0l, point02, true);

// Define the Plane for the Line placement - X-Axis, Y-Axis, Origin
Plane plane = doc.Application.Create.NewPlane (XYZ.BasisX, XYZ.BasisY, point01l);

// Create a Sketch Plane from this Plane in order to display the Line
SketchPlane planeSF = doc.FamilyCreate.NewSketchPlane (plane);

// Display the Line
ModelLine 1ineOlF = doc.FamilyCreate.NewModelCurve (1line0Ol, planeSF) as ModellLine;

// End the series of instructions
transl.Commit () ;

Appendix : Creating the Macro in C#

= Build it : before the Macro can be ‘Run’ it needs to be ‘Built’ in the Editor

*¢ LRUG_01_Basic - Autodesk Revit Architecture 2011

File Edit ‘iew Refackor Project | Buld | Debug Daka Tools ‘Window Help
S - @ # B3 %! # Build LRUG_D1_Basic 4 5= [
g ThisApplication.cs | Bakch Build, .. h
— . .
2 || #¢LrUG_01_Basic. Thisapplication Configuration Manager. .. w || G%rod. ;
[y
= I
4
m—

= Hopefully, this message appears at bottom-left

Build succeeded

= Run it : finally, the code produces some output in the Revit document

Macro Manager

W Application |'E.' Famil':.-'ll

Run

Macros in this application are enabled,

Edit

Macros Langu... | Description

LRUG_01_B asic CH
o Bazic_01_Line Step Inka

