
Autodesk Revit® Model Review 2010 Plugin Guide 1

Developing Plug-in Checks for

Autodesk Revit® Model Review

Introduction
Autodesk Revit® Model Review is a platform for configuring and executing checks to ensure that Revit

models match the requirements for the models. Using the out-of-the-box product, an administrator is

able to create many different types of check using the “templates” provided. In some situations, BIM

administrators will want to check for things which are not possible to check with the “out-of-the-box”

Model Review templates – either because the check has not yet been implemented – or because the

check is too specialized to ever exist in the base product.

The plug-in mechanism exists for developers who are familiar with the Revit® API to create new check

templates which can evaluate the model using any capabilities of the Revit® API.

NOTE: This document refers to Autodesk Revit® Model Review 2010.

Overview
Developers can create plug-ins for Model Review by implementing the basic behaviors for a check, as

well as passing information back and forth between Model Review and the plug-in check (which resides

in a separate DLL). These behaviors include:

• Initialization

• Configuration (optional)

• Reporting (optional)

• Run

• Correct (optional)

Procedure

To create a new Model Review plug-in, the developer should use the following steps:

• Create a new Visual Studio Project Class Library Project

• Add a reference to the Revit API DLL

• Add a reference to the ModelReviewPlugins DLL

• Create a class to implement the check

• Add the IPluginCheck interface to your class

• Implement the members of the IPluginCheck interface:

o Initialize

o Configure (optional)

Autodesk Revit® Model Review 2010 Plugin Guide 2

o GetReportVariables (optional)

o RunCheck

o CorrectCheck

• Build the Project

• Copy the DLL to the plugins folder.

• The Check Template will appear on the Check + Add + Plugins menu the next time that

ModelReview is run.

Filter Concept
The Model Review platform makes use of a “Filter” concept to separate the determination of what

elements to check from the actual running of the check. This also makes the filter more easily

configurable for each different check. Examples of filters include:

- Element Types – such as rooms

- Element parameters – rooms with Area > 9.0

- View Types – Elevation views with scale > 1:48

Plugins are also capable of leveraging the filter mechanism. Developers do this by setting the filter type

during the initialization process. If the plugin does not need to use the filter mechanism, it can specify

“NONE” as the Filter Type.

ICheckData Exchange Reference
The ICheckData structure is used to pass information back and forth between the Model Review

application and the plugin.

Name Type Description

Name String Name of the Check

Category String Category of the Check

FilterType Enum Type of Filter:

- None, Elements, Rooms, PlanCircuits, Views

FilterSubTypes String[] Array of Filter subtypes:

- Elements: The type name or “ALL”

- Views: the ViewType

PassMessage String Message to show when the check passes

FailMessage String Message to show when the check fails

ConfigData String Configuration data provided by the plugin

which will be stored in the check file.

PluginName String Name of the Plugin

PluginGUID String Unique identifier for the plugin

SupportsFamilyDocuments Boolean Whether the plugin supports standalone

family files.

SupportsEmbeddedFamilies Boolean Whether the plugin supports running on

Autodesk Revit® Model Review 2010 Plugin Guide 3

embedded families in a project.

SupportsProjects Boolean Whether the plugin supports running on

projects.

IsConfigurable Boolean Whether the plugin offers a configuration

user interface.

IsCorrectable Boolean Whether the plugin check is correctable

RevitDocument Document The current Revit document

App Application The current Revit Application

FilterData List<object> List of Revit objects to be checked by the

plugin.

Result Enum Result Type from the plugin:

- UNKNOWN: no result

- Passed: the plugin passed

- Failed: the plugin failed

- ReportOnly: the plugin does not

return pass or fail – just a report

- Skipped: the check is not appropriate

to run on this model

- ERROR: the check encountered an

error

ReportTokens Dictionary<string,string> List of replaceable report tokens

ResultData Object Object for the plugin to store result data in

(for later use in correction). DO NOT STORE

ELEMENTS, please use ELEMENTIDs.

ResultsTree TreeNode Tree illustrating the failed items from the

plugin. NOTE: each TreeNode tag may have

an integer ElementId. If the tag is set, Model

Review will attempt to “Show” the selected

Element when the user clicks on that node.

Method Reference

This section describes the methods in the IPluginCheck interface.

Initialize(ICheckData data)

The Initialize method is used by the plugin to initialize information about the check, typically including:

- Filter Type

- Filter Sub Types (optional – if fixed)

- IsConfigurable

- Correctable

- PluginGUID

- SupportsProjects/SupportsFamilyDocuments

Configure(System.Windows.Forms.IWin32Window window, ICheckData data)

Autodesk Revit® Model Review 2010 Plugin Guide 4

The configure method is optional – it is used to provide a graphical user interface to configure the plugin

check. The window is the configuration window, which should be used as the parent of any forms

displayed. The data is the mechanism for passing information back and forth between Model Review

and the plugin. The ConfigData string can be used to persist data back to the check file.

List<ReportVariable> GetReportVariables()

The GetReportableVariables method is optional – it enables the developer to define variables which can

be inserted into the report. This method is called from the configuration tool.

void RunCheck(ICheckData data)

The RunCheck method performs the actual checking process, determining if the check passes or fails, as

well as providing the supporting information. The typical process that the RunCheck method must follow

is along these lines:

Retrieving Configuration Data

If the check stored configuration data, this needs to be extracted/deserialized from the ConfigData

string.

Filter Retrieval

If the plugin uses filters, the FilterData will be populated with a List of objects containing the references

to the Revit objects to be checked. This list will likely need to be cast into the specific types being

checked by this plugin.

Determining Pass or Fail

The plugin must fundamentally decide whether the current model passes or fails the check.

Building Reports

The plugin may build ReportTokens based on reportable variables that the plugin provides to show

results.

Building the ResultsTree

The plugin may build a tree structure to illustrate the results.

Storing Results

If the plugin is able to do automatic correction, it may be desirable to store information about each

failed element and perhaps the correct value. This is recommended so that when the “CorrectCheck”

method is called later, that method does not have to “re-check” everything to identify what to fix.

The RunCheck method can store information in the ResultData property – and this information will be

given back to the plugin during correction.

NOTE: It is very important not to store Element pointers in the result data, because they will almost

certainly not exist at the point when correction happens. Instead, store only ElementIds, GUIDs, or

anything else which can be re-found later.

Autodesk Revit® Model Review 2010 Plugin Guide 5

void CorrectCheck(System.Windows.Forms.IWin32Window window, ICheckData data)

In the case of a plugin which supports correction, the CorrectCheck method will be called if the user

clicks on the “Correct” button.

The CorrectCheck method is used to make changes to the current Revit model so that (hopefully) the

check will pass. The method has access to the ICheckData structure, which should contain configuration

data as well as result data (if appropriate).

Important Notes about correction:

- Because this is running using a modeless approach – it is MANDATORY for developers to

implement any changes to the Revit model in a transaction (using the

Document.BeginTransaction and Document.EndTransaction calls).

- Because the model could have changed between the time it was run and the correction was

applied, ALWAYS test each stored element to ensure that it still exists before attempting to

modify it.

- The correction should make whatever changes are necessary – but the plugin check will

automatically be re-run after the correction has been completed (so do not bother to reset the

result, etc).

