
Automate Your Revit Add-In

Testing with Unit Testing
Patrick Fernbach

Software Engineer

Corey Smith

Software Business Analyst

Patrick Fernbach

Lead Associate | Mechanical Engineering

Software Engineer

KLH Engineers, PSC

Patrick Fernbach specializes in HVAC and plumbing system

design at KLH Engineers, PSC, and serves on the software

development team. He translates the MEP engineers’ needs to

software engineers’ in order to develop process improvements.

He also assists in the creation of Revit add-ins and leads

quality assurance and testing efforts to ensure the custom

tools are of high quality. Patrick holds a Bachelor of Science in

mechanical engineering from the University of Cincinnati.

Corey Smith

Mechanical Designer

Software Business Analyst

KLH Engineers, PSC

Corey Smith is a lead mechanical designer at KLH

Engineers, PSC with over 10 years of experience designing

commercial, retail and hospitality buildings. As an expert in

CAD and Revit, Corey leads a team of in-house software

programmers that develop custom tools and workflows that

enhance construction document production. He holds a

Bachelor of Science in industrial technology with a focus in

computer aided drafting from Morehead State University.

Firm Overview

Offices:

Ft. Thomas, KY

Lexington, KY

Louisville, KY

Columbus, OH

New York, NY

Studios:

Healthcare

Education

Commercial

Civic

Retail

Services:

Mechanical

Electrical

Plumbing

Fire Protection

Technology

KLH National Footprint .

Project Locations .

21,800 projects in 6 years

Licensed in all 50 states

KLH Engineers Background

KLH Engineers is a national MEP firm with a newly formed software department.

Implemented Revit in 2006; went 100% Revit on all projects in 2016.

Developed 1st custom tool in 2008; formed a software department in 2018.

• 2 Software Teams formed; Revit Development Team and a Enterprise Resource Planning (ERP) Development Team

A team of superusers was formed to test tools then roll out to the company. They work with the developers

to ensure the software is working correctly.

As a newly formed department, our initial focus wasn’t with testing. To refocus on QA and build and

maintain internal relationships, the team had to develop an agile mentality.

Today, we will highlight these obstacles and share solutions, including a step-by-step process to setup unit

testing in Visual Studio.

Who are you?

Architects/Engineers/BIM Manager?

Contractors?

Software Engineers? QA?

Learning Objectives

1. EXPLORE END-TO-END TESTS, INTEGRATION TESTS, COMPATIBILITY TESTS, AND UNIT

TESTS TO CREATE BETTER REVIT ADD-INS

2. LEARN HOW TO CREATE A UNIT TEST PROJECT IN MICROSOFT VISUAL STUDIO

3. LEARN HOW TO RUN A UNIT TEST ON REVIT

4. LEARN HOW TO APPLY TESTING PHILOSOPHIES TO YOUR TEAM/COMPANY TO CREATE

BETTER PRODUCTS AND INCREASE DEVELOPMENT SPEED

Problems to Overcome

REVIT ADD-INS HAVE BUGS UPON RELEASE

Bugs are present on releases. New features don't work, or new features do work, and old

features are broken due to lack of testing. Superusers only testing on their project types, Revit

version they used, and scenarios in which were familiar.

TESTING IS NOT CONSISTENT AND IS TAKING TOO LONG

The initial testing process was not consistent. "Hey, can you test this tool?" was the basis of

testing and hoping that the "tester" tried to break the tool. Testing was also taking too long;

feedback was not getting back to the developers.

RELATIONSHIPS DETERIORATING BETWEEN SOFTWARE DEVELOPERS

AND USERS

Due to bugs and FATAL ERRORS, relationships between developers were strained.

Testing Method 1: End-to-End Testing

SIMULATING THE USER EXPERIENCE

• E2E testing should focus on the user experience.

• Does the software behave as expected?

• How does the software interact with other

applications that was developed by another

team?

• What reaction do you have when you use the

software?

LOOK
Credibility

Trust

Harmony

Spirit

FEEL
“Joy of Use”

Interaction

Reaction

USABILITY
Functionality

Individuality

Predictability

User Experience

Testing Method 1: End-to-End Testing

END TO END TESTING EXAMPLE

• Feature was requested to have the ability to select an exterior wall in Revit and get the correct square footage of

the wall in the correct orientation.

• Step 1 – Review the User Stories for the Features

USABILITY
Functionality

Individuality

Predictability

Testing Method 1: End-to-End Testing

END TO END TESTING EXAMPLE

LOOK
Credibility

Trust

Harmony

Spirit

FEEL
“Joy of Use”

Interaction

Reaction

USABILITY
Functionality

Individuality

Predictability

• Step 2 – Open the user interface

• Step 1 – Review the User Stories for the Features

• Step 3 – Select the button to

launch the application. New

view should appear with

outline of spaces.

Testing Method 1: End-to-End Testing

END TO END TESTING EXAMPLE

• Step 1 – Review the User Stories for the

Features

• Step 2 – Open the user interface

• Step 3 – Select the button to launch

the application. New view should appear

with outline of spaces.

• Step 4 – Highlight the wall and set a

cardinal direction. The tool should alert

the user that there has been a change.

LOOK
Credibility

Trust

Harmony

Spirit

FEEL
“Joy of Use”

Interaction

Reaction

USABILITY
Functionality

Individuality

Predictability

Testing Method 1: End-to-End Testing

END TO END TESTING EXAMPLE

LOOK
Credibility

Trust

Harmony

Spirit

FEEL
“Joy of Use”

Interaction

Reaction

USABILITY
Functionality

Individuality

Predictability

• Step 1 – Review the User Stories for the Features

• Step 2 – Open the user interface

• Step 3 – Select the button to launch

the application. New view should appear with

outline of spaces.

• Step 4 – Highlight the wall and set a cardinal

direction. The tool should alert the user that

there has been a change.

• Step 5 – User finishes setting wall types and

executes a Finish function to push calculated

data to the correct location.

Testing Method 1: End-to-End Testing

LOOK
Credibility

Trust

Harmony

Spirit

FEEL
“Joy of Use”

Interaction

Reaction

USABILITY
Functionality

Individuality

Predictability

Testing Method 1: End-to-End Testing

SUPERUSERS COLLABORATING WITH SOFTWARE TEAM

Superusers have the knowledge of how the tool should work as a whole.

o They understand the technology and the process

o They provide valuable feedback to Software

Team.

▪ Feedback comes in several forms:

• Screen recording of tool in action and any

accompanying notes.

• Working session with the developer to

discuss workflow issues.

Testing Method 2: Integration Testing

Integration testing involves taking the individual software modules and testing them as a group.

• KLH has a Revit development team along with a software team

developing an ERP service.

• The Revit Team leverages the ERP teams' method and classes

• When the ERP team makes updates it’s critical to perform

Integration testing to ensure the tools are working correctly

before being rolled out to the clients.

Testing Method 2: Integration Testing

Structured Merged System

KLH utilizes 3 Branches with DevOps to perform Integration Testing

Development

Features logged by

Software Engineer.

Production

Rolled out to company.

Bugs are addressed in

production or testing

branch and merged up.

Testing

Software tested by QA

team and superusers.

DevOps

Development

Board

•Compatibility Testing is a type of
software testing to check whether
your software is proficient enough
to run in different environments.

•You application should be check
against:

▪Versions

▪Network

▪Hardware

▪Operating Systems

▪Browsers

▪Mobile Devices

Testing Method 3: Compatibility Testing

Testing Method 3:

Compatibility Testing

Testing in all versions of Revit

• As a MEP firm the Revit model version is often dictated

by the architect.

o KLH maintains (4) version of Revit to ensure flexibility.

▪ Software engineers develop in 2020. It is the

responsibility of the engineers and developers to

perform Backward Compability Testing to verify if

the software will work with older versions of Revit.

Testing Method 3: Compatibility

Testing

Connection Speed Tests

• KLH has (4) regional office all of which have different

connection speeds.

o Software Engineers perform tests that throttle

connection speeds to simulate the user experience

from the regional offices.

▪ Software engineers explore optimization solution if

load times are not acceptable.

Testing Method 4:

Automated Unit Testing

• Unit testing is the foundation of testing. Unit

tests are typically ran on individual

units/functions of a large application.

• Unit tests are typically more effective when

the person writing them is not the person

who is or did write the code.

Scenario
Test

Functional Test

Unit Test

NUnit

NUnit is a unit-testing framework that is compatible with all

.NET languages. Nunit is Open Source software, with

version 3 being under the MIT license.

The Revit Testing Framework is a framework that should be

referenced into the test project to use. It also has an executable

file that facilitates running all the written tests.

Download here: https://github.com/DynamoDS/RevitTestFramework

RTF

Contributors of RTF
Downloads for 15 Latest Package Versions (Last 6 weeks)

https://github.com/DynamoDS/RevitTestFramework

Visual Studio & Batch File

Visual studio is a standard IDE from Microsoft. The batch

file allows KLH to have a standard batch file that can be

copied to multiple developers to run the same tests

without needing to know the syntax. NUnit and RTF need

to be marked as a reference to the test project.

Create a Revit test model to run the tests. It should be setup the

same way that a user would set it up, or as close as possible.

KLH uses our standard setup to ensure we are running test in

the environment of most users.

Revit Test File

xcopy “…File Path to addin file to copy…" . /D /Y /K /R /H /C /F

xcopy “… File Path to test model to copy… " . /D /Y /K /R /H /C /F

…\RevitTestFrameworkConsole.exe --dir . -a …\KLH.Revit.Testing.dll -r results.xml -revit:"C:\Program Files\Autodesk\Revit

2019\Revit.exe" --continuous --groupByModel --clean

del ./*.log

del KLH_Ribbon.addin

del KLH2019TestModel.rvt

KLH’S BATCH FILE

Console Version Rules

If the developer types "RevitTestFrameworkConsole –h” in the command line, the below options will be populated:

--dir=[VALUE] The full path to the working directory. The working directory is the directory in which RTF will generate the journal and the addin to Run Revit. Revit's run-by-journal capability

requires that all addins which need to be loaded are in the same directory as the journal file. So, if you're testing other addins on top of Revit using RTF, you'll need to put those addins in whatever

directory you specify as the working directory.

-a, --assembly=[VALUE] The full path to the assembly containing your tests.

-r, --results=[VALUE] This is the full path to an .xml file that will contain the results.

-f, --fixture=[VALUE] The full name (with namespace) of a test fixture to run. If no fixture, no category and no test names are specified, RTF will run all tests in the assembly.(OPTIONAL)

-t, --testName[=VALUE] The name of a test to run. If no fixture, no category and no test names are specified, RTF will run all tests in the assembly. (OPTIONAL)

--category[=VALUE] The name of a test category to run. If no fixture, no category and no test names are specified, RTF will run all tests in the assembly. (OPTIONAL)

--exclude[=VALUE] The name of a test category to exclude. This has a higher priortiy than other settings. If a specified category is set here, any test cases that belongs to that category will not

be run. (OPTIONAL)

-c, --concatenate Concatenate the results from this run of RTF with an existing results file if one exists at the path specified. The default behavior is to replace the existing results file.

(OPTIONAL)

--revit[=VALUE] The Revit executable to be used for testing. If no executable is specified, RTF will use the first version of Revit that is found on the machine using the RevitAddinUtility.

(OPTIONAL)

--copyAddins Specify whether to copy the addins from the Revit folder to the current working directory. Copying the addins from the Revit folder will cause the test process to simulate the

typical setup on your machine. (OPTIONAL)

--dry Conduct a dry run. (OPTIONAL)

-x, --clean Cleanup journal files after test completion. (OPTIONAL)

--continuous Run all selected tests in one Revit session. (OPTIONAL)

--groupByModel Run tests with same model without reopening the model for faster execution, requires --continuous. (OPTIONAL)

--time The time, in milliseconds, after which RTF will close the testing process automatically. (OPTIONAL)

-d, --debug Should RTF attempt to attach to a debugger?. (OPTIONAL)

-h, --help Show this message and exit. (OPTIONAL)

What project??

Write A Test!

.xml Results File

<?xml version="1.0" encoding="utf-8"?>

<!--This file represents the results of running a test suite-->

<test-results name = “…KLH.Revit.Testing\obj\KLH.Revit.Testing.dll" total="38" failures="0" not-run="0" date="2019-11-04" time="09:14:05" errors="0" inconclusive="0" ignored="0"

skipped="0" invalid="0">

<test-suite name="DynamoTestFrameworkTests" description="Unit tests in Revit." time="13.0229419" asserts="0" type="TestFixture" result="Success" executed="True">

<results>

<test-suite name="BoundingBoxOfPoints_Tests" description="Unit tests in Revit." time="0.0285923" asserts="0" type="TestFixture" result="Success" executed="True">

<results>

<test-case name="TestCorrectlyRounded" success="True" time="0.0285923" executed="True" asserts="0" result="Success" />

</results>

</test-suite>

<test-suite name="BoundingBoxXyzContains_Tests" description="Unit tests in Revit." time="0.0026858" asserts="0" type="TestFixture" result="Success" executed="True">

<results>

<test-case name="CorrectlyIDPointIn" success="True" time="0.0007379" executed="True" asserts="0" result="Success" />

<test-case name="CorrectlyIDPointOnBox" success="True" time="0.0002673" executed="True" asserts="0" result="Success" />

<test-case name="CorrectlyIDPointOut" success="True" time="0.0016806" executed="True" asserts="0" result="Success" />

</results>

</results>

</test-suite>

</test-results>

.xml Results File

<?xml version="1.0" encoding="utf-8"?> -

<!--This file represents the results of running a test suite-->

<test-results name = “…KLH.Revit.Testing\obj\KLH.Revit.Testing.dll" total="38" date="2019-11-

04" time="09:14:05" errors="0" inconclusive="0" ignored="0" skipped="0" invalid="0">

This line gives a summary of all tests, 38 total test with . It gives the date

initialized and the total time ran. There were not any tests that had errors or were inconclusive,

ignored, skipped or invalid.

.xml Results File

<test-suite name="DynamoTestFrameworkTests" description="Unit tests in Revit." time="13.0229419" asserts="0"

type="TestFixture" result="Success" executed="True">

<results>

<test-suite name="BoundingBoxOfPoints_Tests" description="Unit tests in Revit." time="0.0285923" asserts="0"

type="TestFixture" result="Success" executed="True">

<results>

<test-case name="TestCorrectlyRounded" success="True" time="0.0285923" executed="True" asserts="0"

result="Success" />

</results>

</test-suite>

The body of the xml file is broken up into all of the test suites with each test case under each test

suite. Each test case shows the name, description, time, asserts, type, result, and if it was

executed.

Automate Testing with Automated Builds
Task Group: Command Line

Automate Testing with Automated Builds
Task Group: Publish Test Results

Applying Testing Philosophies

ONE TEAM

It is challenging to send testing to multiple users, especially when the users vary. One QA team is critical to

manage the tests to ensure consistency and quality of testing.

ONE LOCATION

The QA members don’t have to be in the same geographic proximity, but the logging and reporting of the tests

needs to live in one spot.

ONE CULTURE

Testing needs to be embedded in the culture, especially when the same company is doing the development and

the testing. There needs to be a healthy culture between the developers and the QA team, in addition to the

relationship between the developers and the end users.

Feedback loop

The Process

Additional Classes taught by KLH Engineers
Thursday 8:00 – 9:00
A Practical Use of Machine Learning in the AEC Industry

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or

trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for

typographical or graphical errors that may appear in this document.

© 2019 Autodesk. All rights reserved.

http://www.autodesk.com/creativecommons

